Advertisement

Four Floors for the Theory of Theory Change: The Case of Imperfect Discrimination

  • Hans Rott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8761)

Abstract

The theory of theory change due to Alchourrón, Gärdenfors and Makinson (“AGM”) has been widely known as being characterised by two packages of postulates. The basic package consists of six postulates and is very weak, the full package adds two further postulates and is very strong. Revisiting two classical constructions of theory contraction, viz., relational possible models contraction and entrenchment-based contraction on the one hand and tracing the idea of imperfect discrimination of plausibilities on the other, I argue that four intermediate levels can be distinguished that play important roles within the AGM theory.

Keywords

Theory change belief contraction possible models entrenchment interval orders semiorders exponentiated revision AGM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alchourrón, C.E., Makinson, D.: Maps between some different kinds of contraction function: The finite case. Studia Logica 45, 187–198 (1986)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aleskerov, F., Bouyssou, D., Monjardet, B.: Utility Maximization, Choice and Preference, 2nd edn. Studies in Economic Theory, vol. 16. Springer, Berlin (2007)MATHGoogle Scholar
  4. 4.
    Fermé, E., Hansson, S.O.: AGM 25 years: Twenty-five years of research in belief change. Journal of Philosophical Logic 40(2), 295–331 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. Journal of Mathematical Psychology 7, 144–149 (1970)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fishburn, P.C.: Semiorders and choice functions. Econometrica 43, 975–977 (1975)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Freund, M.: Injective models and disjunctive relations. Journal of Logic and Computation 3, 231–247 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. Bradford Books. MIT Press, Cambridge (1988)Google Scholar
  9. 9.
    Gärdenfors, P., Makinson, D.: Revisions of knowledge systems using epistemic entrenchment. In: Vardi, M. (ed.) Proceedings of the Second Conference on Theoretical Aspects of Reasoning About Knowledge (TARK 1988), pp. 83–95. Morgan Kaufmann, Los Altos (1988)Google Scholar
  10. 10.
    Gärdenfors, P., Makinson, D.: Nonmonotonic inference based on expectations. Artificial Intelligence 65, 197–245 (1994)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17, 157–170 (1988)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jamison, D.T., Lau, L.J.: Semiorders and the theory of choice. Econometrica 41, 901–912 (1973)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Jamison, D.T., Lau, L.J.: Semiorders and the theory of choice: A correction. Econometrica 43, 979–980 (1975)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lindström, S.: A semantic approach to nonmonotonic reasoning: Inference operations and choice. Tech. Rep. 1991:6, Department of Philosophy, University of Uppsala (1991), ultimately published as Tech. Rep. No.1994:10Google Scholar
  16. 16.
    Luce, R.D.: Semiorders and a theory of utility discrimination. Econometrica 24, 178–191 (1956)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 35–110. Oxford University Press, Oxford (1994)Google Scholar
  18. 18.
    Mirkin, B.G.: Description of some relations on the set of real-line intervals. Journal of Mathematical Psychology 9, 243–252 (1972)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Moulin, H.: Choice functions over a finite set: A summary. Social Choice and Welfare 2, 147–160 (1985)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Peppas, P., Williams, M.A.: Belief change and semiorders. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2014, Vienna, July 20-24 (2014)Google Scholar
  21. 21.
    Roberts, F.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press, New York (1969)Google Scholar
  22. 22.
    Rott, H.: Preferential belief change using generalized epistemic entrenchment. Journal of Logic, Language and Information 1, 45–78 (1992)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Rott, H.: Belief contraction in the context of the general theory of rational choice. Journal of Symbolic Logic 58, 1426–1450 (1993)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Rott, H.: Change, Choice and Inference: A Study in Belief Revision and Nonmonotonic Reasoning. Oxford University Press, Oxford (2001)Google Scholar
  25. 25.
    Rott, H.: Basic entrenchment. Studia Logica 73, 257–280 (2003)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Rott, H.: Three floors for the theory of theory change. In: Punčochář, V., Dančák, M. (eds.) Logica Yearbook 2013, pp. 187–205. College Publications, London (2014)Google Scholar
  27. 27.
    Rott, H., Hansson, S.O.: Safe contraction revisited. In: Hansson, S.O. (ed.) David Makinson on Classical Methods for Non-Classical Problems, pp. 35–70. Outstanding Contributions to Logic. Springer, Dordrecht (2014)Google Scholar
  28. 28.
    Schlechta, K. (ed.): Nonmonotonic Logics. LNCS (LNAI), vol. 1187. Springer, Heidelberg (1997)MATHGoogle Scholar
  29. 29.
    Scott, D., Suppes, P.: Foundational aspects of theories of measurement. Journal of Symbolic Logic 23, 113–128 (1958)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sen, A.K.: Choice functions and revealed preference. Review of Economic Studies 38, 307–317 (1971), Reprinted in A.K.S., Choice, Welfare and Measurement, pp. 41–53. Blackwell, Oxford (1982)Google Scholar
  31. 31.
    Suppes, P., Krantz, D.H., Luce, R.D., Tversky, A.: Foundations of Measurement. Geometrical, threshold and probabilistic representations, vol. 2. Academic Press, New York (1989)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hans Rott
    • 1
  1. 1.University of RegensburgRegensburgGermany

Personalised recommendations