Skip to main content

Improving the Normalization of Weight Rules in Answer Set Programs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8761)

Abstract

Cardinality and weight rules are important primitives in answer set programming. In this context, normalization means the translation of such rules back into normal rules, e.g., for the sake of boosting the search for answers sets. For instance, the normalization of cardinality rules can be based on Boolean circuits that effectively sort or select greatest elements amongst Boolean values. In this paper, we develop further constructions for the normalization of weight rules and adapt techniques that have been previously used to translate pseudo-Boolean constraints into the propositional satisfiability (SAT) problem. In particular, we consider mixed-radix numbers as an efficient way to represent and encode integer weights involved in a weight rule and propose a heuristic for selecting a suitable base. Moreover, we incorporate a scheme for structure sharing in the normalization procedure. In the experimental part, we study the effect of normalizing weight rules on compactness and search performance measured in terms of program size, search time, and number of conflicts.

Keywords

  • Logic Program
  • Boolean Circuit
  • Weight Rule
  • Structure Sharing
  • Great Common Divisor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The support from the Finnish Centre of Excellence in Computational Inference Research (COIN) funded by the Academy of Finland (under grant #251170) is gratefully acknowledged.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-11558-0_12
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-11558-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A parametric approach for smaller and better encodings of cardinality constraints. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 80–96. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  2. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Mayer-Eichberger, V.: A new look at BDDs for pseudo-Boolean constraints. Journal of Artificial Intelligence Research 45, 443–480 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Alviano, M., Dodaro, C., Ricca, F.: Preliminary report on WASP 2.0. In: NMR 2014 (2014)

    Google Scholar 

  4. Alviano, M., et al.: The fourth answer set programming competition: Preliminary report. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 42–53. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  5. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: A theoretical and empirical study. Constraints 16(2), 195–221 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo Boolean constraints to SAT. Journal on Satisfiability, Boolean Modeling and Computation 2(1-4), 191–200 (2006)

    MATH  Google Scholar 

  7. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-Boolean constraints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  8. Batcher, K.: Sorting networks and their applications. In: AFIPS 1968, pp. 307–314. ACM (1968)

    Google Scholar 

  9. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS (2009)

    Google Scholar 

  10. Bomanson, J., Janhunen, T.: Normalizing cardinality rules using merging and sorting constructions. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 187–199. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  11. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communications of the ACM 54(12), 92–103 (2011)

    CrossRef  Google Scholar 

  12. Codish, M., Fekete, Y., Fuhs, C., Schneider-Kamp, P.: Optimal base encodings for pseudo-Boolean constraints. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 189–204. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  13. Corander, J., Janhunen, T., Rintanen, J., Nyman, H., Pensar, J.: Learning chordal Markov networks by constraint satisfaction. In: Advances in Neural Information Processing Systems 26, NIPS 2013, pp. 1349–1357 (2013)

    Google Scholar 

  14. Cussens, J.: Bayesian network learning with cutting planes. In: UAI 2011, pp. 153–160. AUAI (2011)

    Google Scholar 

  15. De Cat, B., Bogaerts, B., Bruynooghe, M., Denecker, M.: Predicate logic as a modelling language: The IDP system. CoRR abs/1401.6312 (2014)

    Google Scholar 

  16. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2(1-4), 1–26 (2006)

    MATH  Google Scholar 

  17. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of aggregate functions in the DLV system. Theory and Practice of Logic Programming 8(5-6), 545–580 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of Logic Programming 5(1-2), 45–74 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The Potsdam answer set solving collection. AI Communications 24(2), 107–124 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the implementation of weight constraint rules in conflict-driven ASP solvers. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 250–264. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  21. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to practice. Artificial Intelligence 187, 52–89 (2012)

    MathSciNet  CrossRef  Google Scholar 

  22. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP 1988, pp. 1070–1080. MIT (1988)

    Google Scholar 

  23. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  24. Hölldobler, S., Manthey, N., Steinke, P.: A compact encoding of pseudo-Boolean constraints into SAT. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS, vol. 7526, pp. 107–118. Springer, Heidelberg (2012)

    Google Scholar 

  25. Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian network structure using LP relaxations. In: AISTATS 2010, pp. 358–365. JMLR (2010)

    Google Scholar 

  26. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Gelfond Festschrift. LNCS (LNAI), vol. 6565, pp. 111–130. Springer, Heidelberg (2011)

    Google Scholar 

  27. Janhunen, T., Niemelä, I.: Applying visible strong equivalence in answer-set program transformations. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Lifschitz Festschrift. LNCS, vol. 7265, pp. 363–379. Springer, Heidelberg (2012)

    Google Scholar 

  28. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing stable models via reductions to difference logic. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 142–154. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  29. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)

    MathSciNet  CrossRef  Google Scholar 

  30. Lifschitz, V.: Answer set planning. In: ICLP 1999, pp. 23–37. MIT (1999)

    Google Scholar 

  31. Lifschitz, V., Tang, L., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25(3-4), 369–389 (1999)

    MathSciNet  CrossRef  MATH  Google Scholar 

  32. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  33. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer (1999)

    Google Scholar 

  34. Nguyen, M., Janhunen, T., Niemelä, I.: Translating answer-set programs into bit-vector logic. In: Tompits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.) INAP/WLP 2011. LNCS (LNAI), vol. 7773, pp. 95–113. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  35. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

    MathSciNet  CrossRef  MATH  Google Scholar 

  36. Roussel, O., Manquinho, V.: Pseudo-Boolean and cardinality constraints. In: Handbook of Satisfiability, pp. 695–733. IOS (2009)

    Google Scholar 

  37. Simons, P.: Extending the stable model semantics with more expressive rules. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 305–316. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  38. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

    MathSciNet  CrossRef  MATH  Google Scholar 

  39. Tamura, N., Banbara, M., Soh, T.: PBSugar: Compiling pseudo-Boolean constraints to SAT with order encoding. In: PoS 2013 (2013)

    Google Scholar 

  40. Warners, J.: A linear-time transformation of linear inequalities into conjunctive normal form. Information Processing Letters 68(2), 63–69 (1998)

    MathSciNet  CrossRef  Google Scholar 

  41. Wittocx, J., Denecker, M., Bruynooghe, M.: Constraint propagation for first-order logic and inductive definitions. ACM Transactions on Computational Logic 14(3), 17:1–17:45 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bomanson, J., Gebser, M., Janhunen, T. (2014). Improving the Normalization of Weight Rules in Answer Set Programs. In: Fermé, E., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2014. Lecture Notes in Computer Science(), vol 8761. Springer, Cham. https://doi.org/10.1007/978-3-319-11558-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11558-0_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11557-3

  • Online ISBN: 978-3-319-11558-0

  • eBook Packages: Computer ScienceComputer Science (R0)