Skip to main content

Cellular Automaton Model with Non-hypothetical Congested Steady State Reproducing the Three-Phase Traffic Flow Theory

  • Conference paper
Cellular Automata (ACRI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8751))

Included in the following conference series:

Abstract

A new assumption is assumed to explain the mechanisms of traffic flow that in the noiseless limit, vehicles’ space gap will oscillate around the desired space gap, rather than keep the desired space gap, in the homogeneous congested traffic flow. It means there are no steady states of congested traffic and contradicts with the fundamental diagram approach and three-phase traffic flow theory both of which admit the existence of steady states of congested traffic. In order to verify this assumption, a cellular automaton model with non-hypothetical congested steady state is proposed, which is based on the Nagel-Schreckenberg model with additional slow-to-start and the effective desired space gap. Simulations show that this new model can produce the synchronized flow, the transitions from free flow to synchronized flow to wide moving jams, and multiple congested patterns observed by the three-phase theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Physics Reports 329(4), 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  2. Helbing, D.: Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73(4), 1067 (2001)

    Article  Google Scholar 

  3. Kerner, B.S.: The physics of traffic: empirical freeway pattern features, engineering applications, and theory. Springer (2004)

    Google Scholar 

  4. Kerner, B.S.: Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer (2009)

    Google Scholar 

  5. Treiber, M., Kesting, A.: Traffic Flow Dynamics. Springer (2013)

    Google Scholar 

  6. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Physical Review E 51, 1035–1042 (1995)

    Article  Google Scholar 

  7. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal de Physique I 2(12), 2221–2229 (1992)

    Article  Google Scholar 

  8. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 229(1178), 317–345 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  9. Richards, P.I.: Shock waves on the highway. Operations Research 4(1), 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  10. Payne, H.J.: FREFLO: A macroscopic simulation model of freeway traffic. Transportation Research Record 722 (1979)

    Google Scholar 

  11. Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Operations Research 7(1), 86–106 (1959)

    Article  MathSciNet  Google Scholar 

  12. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Physical Review E 62(2), 1805 (2000)

    Article  Google Scholar 

  13. Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Towards a realistic microscopic description of highway traffic. Journal of Physics A: Mathematical and General 33(48), L477–L485 (2000)

    Google Scholar 

  14. Kesting, A., Treiber, M.: How reaction time, update time, and adaptation time influence the stability of traffic flow. Computer - Aided Civil and Infrastructure Engineering 23(2), 125–137 (2008)

    Article  Google Scholar 

  15. Kerner, B.S., Klenov, S.L.: A microscopic model for phase transitions in traffic flow. Journal of Physics A: Mathematical and General 35(3), L31 (2002)

    Google Scholar 

  16. Kerner, B.S., Klenov, S.L.: Microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks. Physical Review E 68(3), 036130 (2003)

    Google Scholar 

  17. Kerner, B.S., Klenov, S.L.: Deterministic microscopic three-phase traffic flow models. Journal of Physics A: Mathematical and General 39(8), 1775 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kerner, B.S., Klenov, S.L., Schreckenberg, M.: Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow. Physical Review E 84(4), 046110 (2011)

    Google Scholar 

  19. Kerner, B.S., Klenov, S.L., Schreckenberg, M.: Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow. Physical Review E 84(4), 046110 (2011)

    Google Scholar 

  20. Kerner, B.S., Klenov, S.L., Wolf, D.E.: Cellular automata approach to three-phase traffic theory. Journal of Physics A: Mathematical and General 35(47), 9971 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lee, H.K., Barlovic, R., Schreckenberg, M., Kim, D.: Mechanical restriction versus human overreaction triggering congested traffic states. Physical Review Letters 92(23), 238702 (2004)

    Article  Google Scholar 

  22. Neubert, L., Santen, L., Schadschneider, A., Schreckenberg, M.: Single-vehicle data of highway traffic: A statistical analysis. Physical Review E 60(6), 6480 (1999)

    Article  Google Scholar 

  23. Tian, J.-F., Jia, B., Li, X.-G., Jiang, R., Zhao, X.-M., Gao, Z.-Y.: Synchronized traffic flow simulating with cellular automata model. Physica A: Statistical Mechanics and its Applications 388(23), 4827–4837 (2009)

    Article  Google Scholar 

  24. Gao, K., Jiang, R., Hu, S.-X., Wang, B.-H., Wu, Q.-S.: Cellular-automaton model with velocity adaptation in the framework of Kerners three-phase traffic theory. Physical Review E 76(2), 026105 (2007)

    Google Scholar 

  25. Jiang, R., Wu, Q.-S.: Cellular automata models for synchronized traffic flow. Journal of Physics A: Mathematical and General 36(2), 381 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Treiber, M., Kesting, A., Helbing, D.: Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps. Physical Review E 74(1), 016123 (2006)

    Google Scholar 

  27. Wagner, P.: Analyzing fluctuations in car-following. Transportation Research Part B: Methodological 46(10), 1384–1392 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tian, J., Treiber, M., Zhu, C., Jia, B., Li, H. (2014). Cellular Automaton Model with Non-hypothetical Congested Steady State Reproducing the Three-Phase Traffic Flow Theory. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11520-7_65

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11519-1

  • Online ISBN: 978-3-319-11520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics