Cellular Automaton Model with Non-hypothetical Congested Steady State Reproducing the Three-Phase Traffic Flow Theory

  • Junfang Tian
  • Martin Treiber
  • Chenqiang Zhu
  • Bin Jia
  • HuiXuan Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8751)

Abstract

A new assumption is assumed to explain the mechanisms of traffic flow that in the noiseless limit, vehicles’ space gap will oscillate around the desired space gap, rather than keep the desired space gap, in the homogeneous congested traffic flow. It means there are no steady states of congested traffic and contradicts with the fundamental diagram approach and three-phase traffic flow theory both of which admit the existence of steady states of congested traffic. In order to verify this assumption, a cellular automaton model with non-hypothetical congested steady state is proposed, which is based on the Nagel-Schreckenberg model with additional slow-to-start and the effective desired space gap. Simulations show that this new model can produce the synchronized flow, the transitions from free flow to synchronized flow to wide moving jams, and multiple congested patterns observed by the three-phase theory.

Keywords

Cellular automaton three-phase traffic flow fundamental diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Physics Reports 329(4), 199–329 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Helbing, D.: Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73(4), 1067 (2001)CrossRefGoogle Scholar
  3. 3.
    Kerner, B.S.: The physics of traffic: empirical freeway pattern features, engineering applications, and theory. Springer (2004)Google Scholar
  4. 4.
    Kerner, B.S.: Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer (2009)Google Scholar
  5. 5.
    Treiber, M., Kesting, A.: Traffic Flow Dynamics. Springer (2013)Google Scholar
  6. 6.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Physical Review E 51, 1035–1042 (1995)CrossRefGoogle Scholar
  7. 7.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal de Physique I 2(12), 2221–2229 (1992)CrossRefGoogle Scholar
  8. 8.
    Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 229(1178), 317–345 (1955)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Richards, P.I.: Shock waves on the highway. Operations Research 4(1), 42–51 (1956)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Payne, H.J.: FREFLO: A macroscopic simulation model of freeway traffic. Transportation Research Record 722 (1979)Google Scholar
  11. 11.
    Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Operations Research 7(1), 86–106 (1959)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Physical Review E 62(2), 1805 (2000)CrossRefGoogle Scholar
  13. 13.
    Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Towards a realistic microscopic description of highway traffic. Journal of Physics A: Mathematical and General 33(48), L477–L485 (2000)Google Scholar
  14. 14.
    Kesting, A., Treiber, M.: How reaction time, update time, and adaptation time influence the stability of traffic flow. Computer - Aided Civil and Infrastructure Engineering 23(2), 125–137 (2008)CrossRefGoogle Scholar
  15. 15.
    Kerner, B.S., Klenov, S.L.: A microscopic model for phase transitions in traffic flow. Journal of Physics A: Mathematical and General 35(3), L31 (2002)Google Scholar
  16. 16.
    Kerner, B.S., Klenov, S.L.: Microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks. Physical Review E 68(3), 036130 (2003)Google Scholar
  17. 17.
    Kerner, B.S., Klenov, S.L.: Deterministic microscopic three-phase traffic flow models. Journal of Physics A: Mathematical and General 39(8), 1775 (2006)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Kerner, B.S., Klenov, S.L., Schreckenberg, M.: Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow. Physical Review E 84(4), 046110 (2011)Google Scholar
  19. 19.
    Kerner, B.S., Klenov, S.L., Schreckenberg, M.: Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow. Physical Review E 84(4), 046110 (2011)Google Scholar
  20. 20.
    Kerner, B.S., Klenov, S.L., Wolf, D.E.: Cellular automata approach to three-phase traffic theory. Journal of Physics A: Mathematical and General 35(47), 9971 (2002)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Lee, H.K., Barlovic, R., Schreckenberg, M., Kim, D.: Mechanical restriction versus human overreaction triggering congested traffic states. Physical Review Letters 92(23), 238702 (2004)CrossRefGoogle Scholar
  22. 22.
    Neubert, L., Santen, L., Schadschneider, A., Schreckenberg, M.: Single-vehicle data of highway traffic: A statistical analysis. Physical Review E 60(6), 6480 (1999)CrossRefGoogle Scholar
  23. 23.
    Tian, J.-F., Jia, B., Li, X.-G., Jiang, R., Zhao, X.-M., Gao, Z.-Y.: Synchronized traffic flow simulating with cellular automata model. Physica A: Statistical Mechanics and its Applications 388(23), 4827–4837 (2009)CrossRefGoogle Scholar
  24. 24.
    Gao, K., Jiang, R., Hu, S.-X., Wang, B.-H., Wu, Q.-S.: Cellular-automaton model with velocity adaptation in the framework of Kerners three-phase traffic theory. Physical Review E 76(2), 026105 (2007)Google Scholar
  25. 25.
    Jiang, R., Wu, Q.-S.: Cellular automata models for synchronized traffic flow. Journal of Physics A: Mathematical and General 36(2), 381 (2003)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Treiber, M., Kesting, A., Helbing, D.: Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps. Physical Review E 74(1), 016123 (2006)Google Scholar
  27. 27.
    Wagner, P.: Analyzing fluctuations in car-following. Transportation Research Part B: Methodological 46(10), 1384–1392 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Junfang Tian
    • 1
  • Martin Treiber
    • 2
  • Chenqiang Zhu
    • 1
  • Bin Jia
    • 3
  • HuiXuan Li
    • 3
  1. 1.Institute of Systems Engineering, College of Management and EconomicsTianjin UniversityTianjinChina
  2. 2.Institute for Transport & EconomicsTechnische Universität DresdenDresdenGermany
  3. 3.MOE Key Laboratory for Urban Transportation Complex Systems Theory, and TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations