Skip to main content

Neural Stem Cells in Response to Microenvironment Changes Inside and Outside of the Brain

  • Chapter
  • First Online:
Cellular Therapy for Stroke and CNS Injuries

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 928 Accesses

Abstract

Neural stem cells/neural progenitor cells (NSCs/NPCs) residing in the neurogenic regions of the brain play a crucial role in brain development, brain plasticity, and brain repair. Recent progress in NSC/NPC research has advanced our understanding of the NSC/NPC niche and signaling networks controlling NSC/NPC proliferation and differentiation. However, the natural behavioral of NSCs/NPCs in response to physiological and pathological changes inside and outside the brain remains poorly understood. This chapter has summarized recent findings concerning NSC/NPC activity in the early stage of cortical brain ischemia and the hematopoietic stem cell growth factors in regulating NSC/NPC proliferation and differentiation. Moreover, future directions for NSC/NPC research are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ara-C :

Cytosine-β-d-Arabinofuranoside

bFGF :

Basic fibroblast growth factor

bHLH :

Basic helix-loop-helix

BDNF :

Brain-derived neurotrophic factor

BrdU :

Bromodeoxyuridine

EGF :

Epidermal growth factor

EMVs :

Exosomes and microvesicles

G-CSF  :

Granulocyte-colony stimulating factor

GFAP :

Glial fibrillary acidic protein

GFP  :

Green fluorescent protein

LTP :

Long-term potentiation

Ngn1:

Neurogenin 1

NSCs/NPCs :

Neural stem cells/neural progenitor cells

OB :

Olfactory bulb

RMS:

Rostral migratory stream

RT-PCR :

Reverse transcription polymerase chain reaction

SCF :

Stem cell factor

SGZ  :

Subgranular zone

SHRs :

Spontaneously hypertensive rats

SVZ :

Subventricular zone

TuJ1  :

Neuron-specific class iii beta-tubulin

VEGF :

Vascular endothelial growth factor

References

  • Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM, Carvalho RF, Carvalho AP, Duarte CB (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329–1343

    Article  CAS  PubMed  Google Scholar 

  • Anthony TE, Mason HA, Gridley T, Fishell G, Heintz N (2005) Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes Dev 19:1028–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aoki J, Ohashi K, Mitsuhashi M, Murakami T, Oakes M, Kobayashi T, Doki N, Kakihana K, Sakamaki H (2014) Posttransplantation bone marrow assessment by quantifying hematopoietic cell-derived mRNAs in plasma exosomes/microvesicles. Clin Chem 60:675–682

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson A, Kokaia Z, Lindvall O (2001) N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur J Neurosci 14:10–18

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  CAS  PubMed  Google Scholar 

  • Ashman LK (1999) The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol 31:1037–1051

    Article  CAS  PubMed  Google Scholar 

  • Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    Article  CAS  PubMed  Google Scholar 

  • Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H (2000) Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 20:1446–1457

    CAS  PubMed  Google Scholar 

  • Cui L, Murikinati SR, Wang D, Zhang X, Duan WM, Zhao LR (2013) Reestablishing neuronal networks in the aged brain by stem cell factor and granulocyte-colony stimulating factor in a mouse model of chronic stroke. PLoS ONE 8:e64684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Diederich K, Sevimli S, Dorr H, Kosters E, Hoppen M, Lewejohann L, Klocke R, Minnerup J, Knecht S, Nikol S, Sachser N, Schneider A, Gorji A, Sommer C, Schabitz WR (2009) The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain: a characterization of G-CSF-deficient mice. J Neurosci 29:11572–11581

    Article  CAS  PubMed  Google Scholar 

  • Egger B, Gold KS, Brand AH (2011) Regulating the balance between symmetric and asymmetric stem cell division in the developing brain. Fly (Austin) 5:237–241

    Article  CAS  Google Scholar 

  • Elmariah SB, Oh EJ, Hughes EG, Balice-Gordon RJ (2005) Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J Neurosci 25:3638–3650

    Article  CAS  PubMed  Google Scholar 

  • Farah MH, Olson JM, Sucic HB, Hume RI, Tapscott SJ, Turner DL (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127:693–702

    CAS  PubMed  Google Scholar 

  • Farkas LM, Huttner WB (2008) The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 20:707–715

    Article  CAS  PubMed  Google Scholar 

  • Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, Yamaguchi M, Kettenmann H, Kempermann G (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373–382

    Article  CAS  PubMed  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Gradwohl G, Fode C, Guillemot F (1996) Restricted expression of a novel murine atonal-related bHLH protein in undifferentiated neural precursors. Dev Biol 180:227–241

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Harada K, Sukamoto T (1993) Chronological atrophy after transient middle cerebral artery occlusion in rats. Brain Res 618:251–260

    Article  CAS  PubMed  Google Scholar 

  • Heinrich MC, Dooley DC, Freed AC, B and L, Hoatlin ME, Keeble WW, Peters ST, Silvey KV, Ey FS, Kabat D et al (1993) Constitutive expression of steel factor gene by human stromal cells. Blood 82:771–783

    CAS  PubMed  Google Scholar 

  • Henrique D, Hirsinger E, Adam J, Le Roux I, Pourquie O, Ish-Horowicz D, Lewis J (1997) Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr Biol 7:661–670

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98:4710–4715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jin K, Mao XO, Sun Y, Xie L, Greenberg DA (2002) Stem cell factor stimulates neurogenesis in vitro and in vivo. J Clin Invest 110:311–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189

    Article  CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T (1999) The Notch-Hes pathway in mammalian neural development. Cell Res 9:179–188

    Article  CAS  PubMed  Google Scholar 

  • Katafuchi T, Li AJ, Hirota S, Kitamura Y, Hori T (2000) Impairment of spatial learning and hippocampal synaptic potentiation in c-kit mutant rats. Learn Mem 7:383–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kempermann G, Wiskott L, Gage FH (2004a) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14:186–191

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004b) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321:892–901

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Leeds P, Chuang DM (2009) The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem 110:1226–1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komine-Kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, Mochizuki H, Mizuno Y, Urabe T (2006) Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab 26:402–413

    Article  CAS  PubMed  Google Scholar 

  • Leker RR, Soldner F, Velasco I, Gavin DK, Androutsellis-Theotokis A, McKay RD (2007) Long-lasting regeneration after ischemia in the cerebral cortex. Stroke 38:153–161

    Article  PubMed  Google Scholar 

  • Li B, Piao CS, Liu XY, Guo WP, Xue YQ, Duan WM, Gonzalez-Toledo ME, Zhao LR (2010) Brain self-protection: the role of endogenous neural progenitor cells in adult brain after cerebral cortical ischemia. Brain Res 1327:91–102

    Article  CAS  PubMed  Google Scholar 

  • Lie DC, Song H, Colamarino SA, Ming GL, Gage FH (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399–421

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    Article  CAS  PubMed  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Sommer L, Cserjesi P, Anderson DJ (1997) Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing notch ligands. J Neurosci 17:3644–3652

    CAS  PubMed  Google Scholar 

  • McShea A, Lee HG, Petersen RB, Casadesus G, Vincent I, Linford NJ, Funk JO, Shapiro RA, Smith MA (2007) Neuronal cell cycle re-entry mediates Alzheimer disease-type changes. Biochim Biophys Acta 1772:467–472

    Article  CAS  PubMed  Google Scholar 

  • Mizutani K, Saito T (2005) Progenitors resume generating neurons after temporary inhibition of neurogenesis by Notch activation in the mammalian cerebral cortex. Development 132:1295–1304

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki N, Takagi N, Onozato C, Moriyama Y, Takeo S, Tanonaka K (2008) Delayed injection of neural progenitor cells improved spatial learning dysfunction after cerebral ischemia. Biochem Biophys Res Commun 368:151–156

    Article  CAS  PubMed  Google Scholar 

  • Motro B, Wojtowicz JM, Bernstein A, van der Kooy D (1996) Steel mutant mice are deficient in hippocampal learning but not long-term potentiation. Proc Natl Acad Sci U S A 93:1808–1813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26:536–542

    Article  CAS  PubMed  Google Scholar 

  • Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma S, Philpott A, Harris WA (2001) Cell cycle and cell fate in the nervous system. Curr Opin Neurobiol 11:66–73

    Article  CAS  PubMed  Google Scholar 

  • Piao CS, Li B, Zhang LJ, Zhao LR (2012) Stem cell factor and granulocyte colony-stimulating factor promote neuronal lineage commitment of neural stem cells. Differentiation 83:17–25

    Article  CAS  PubMed  Google Scholar 

  • Politis PK, Thomaidou D, Matsas R (2008) Coordination of cell cycle exit and differentiation of neuronal progenitors. Cell Cycle 7:691–697

    Article  CAS  PubMed  Google Scholar 

  • Qu M, Buchkremer-Ratzmann I, Schiene K, Schroeter M, Witte OW, Zilles K (1998) Bihemispheric reduction of GABAA receptor binding following focal cortical photothrombotic lesions in the rat brain. Brain Res 813:374–380

    Article  CAS  PubMed  Google Scholar 

  • Raina AK, Zhu X, Smith MA (2004) Alzheimer’s disease and the cell cycle. Acta Neurobiol Exp (Wars) 64:107–112

    Google Scholar 

  • Redecker C, Wang W, Fritschy JM, Witte OW (2002) Widespread and long-lasting alterations in GABA(A)-receptor subtypes after focal cortical infarcts in rats: mediation by NMDA-dependent processes. J Cereb Blood Flow Metab 22:1463–1475

    Article  CAS  PubMed  Google Scholar 

  • Ren JM, Finklestein SP (2005) Growth factor treatment of stroke. Curr Drug Targets CNS Neurol Disord 4:121–125

    Article  CAS  PubMed  Google Scholar 

  • Ripa RS, Kastrup J (2008) G-CSF therapy with mobilization of bone marrow stem cells for myocardial recovery after acute myocardial infarction—a relevant treatment? Exp Hematol 36:681–686

    Article  CAS  PubMed  Google Scholar 

  • Schabitz WR, Schwab S, Spranger M, Hacke W (1997) Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17:500–506

    Article  CAS  PubMed  Google Scholar 

  • Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, Sommer C, Schwab S (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751

    Article  PubMed  Google Scholar 

  • Schiene K, Bruehl C, Zilles K, Qu M, Hagemann G, Kraemer M, Witte OW (1996) Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J Cereb Blood Flow Metab 16:906–914

    Article  CAS  PubMed  Google Scholar 

  • Schmid RS, McGrath B, Berechid BE, Boyles B, Marchionni M, Sestan N, Anton ES (2003) Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc Natl Acad Sci U S A 100:4251–4256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Kuhn HG, Schabitz WR (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, Li H (2004) Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110:1847–1854

    Article  CAS  PubMed  Google Scholar 

  • Six I, Gasan G, Mura E, Bordet R (2003) Beneficial effect of pharmacological mobilization of bone marrow in experimental cerebral ischemia. Eur J Pharmacol 458:327–328

    Article  CAS  PubMed  Google Scholar 

  • Sommer L, Ma Q, Anderson DJ (1996) Beurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci 8:221–241

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Cui L, Piao C, Li B, Zhao LR (2013) The effects of hematopoietic growth factors on neurite outgrowth. PLoS ONE 8:e75562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376

    Article  CAS  PubMed  Google Scholar 

  • Suzuki SO, Goldman JE (2003) Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration. J Neurosci 23:4240–4250

    CAS  PubMed  Google Scholar 

  • Touzani O, Roussel S, MacKenzie ET (2001) The ischaemic penumbra. Curr Opin Neurol 14:83–88

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang ZG, Zhang RL, Jiao ZX, Wang Y, Pourabdollah-Nejad DS, LeTourneau Y, Gregg SR, Chopp M (2006) Neurogenin 1 mediates erythropoietin enhanced differentiation of adult neural progenitor cells. J Cereb Blood Flow Metab 26:556–564

    Article  PubMed  Google Scholar 

  • Watari K, Ozawa K, Tajika K, Tojo A, Tani K, Kamachi S, Harigaya K, Takahashi T, Sekiguchi S, Nagata S et al (1994) Production of human granulocyte colony stimulating factor by various kinds of stromal cells in vitro detected by enzyme immunoassay and in situ hybridization. Stem Cells 12:416–423

    Article  CAS  PubMed  Google Scholar 

  • Wichterle H, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18:779–791

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Radeke MJ, Matheson CR, Talvenheimo J, Welcher AA, Feinstein SC (1997) Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J Comp Neurol 378:135–157

    Article  CAS  PubMed  Google Scholar 

  • Zhao LR, Singhal S, Duan WM, Mehta J, Kessler JA (2007a) Brain repair by hematopoietic growth factors in a rat model of stroke. Stroke 38:2584–2591

    Article  PubMed  Google Scholar 

  • Zhao LR, Berra HH, Duan WM, Singhal S, Mehta J, Apkarian AV, Kessler JA (2007b) Beneficial effects of hematopoietic growth factor therapy in chronic ischemic stroke in rats. Stroke 38:2804–2811

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by The National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), R01 NS060911.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ru Zhao M.D., Ph.D. .

Editor information

Editors and Affiliations

Concluding Remarks

Concluding Remarks

NSCs/NPCs do not reside in an “isolated” microenvironment in the brain, the factors or molecules produced by other organs or systems may also regulate the proliferation and differentiation of NSCs/NPCs. Hematopoietic growth factors, SCF and G-CSF, are produced by bone marrow stromal cells and fibroblasts (Heinrich et al. 1993; Watari et al. 1994) to govern bone marrow stem cell survival, proliferation and differentiation . The findings provided in this chapter supports that SCF and G-CSF are also involved in cell fate determination and commitment of NSCs/NPCs. This observation leads to the insight that the physiological and pathological changes in other systems may also affect NSC/NPC proliferation and differentiation in the CNS . In fact, the precise role of NSCs/NPCs in the setting of brain injury remains poorly understood. Our research data suggest that the early reaction of NSCs/NPCs in the condition of cortical brain ischemia is self-protective: escaping away from the area suffering from ischemic injury. Cell-cell interaction and communication play a key role in directing the migrating NSCs/NPCs to flee. In addition, focal brain ischemia-induced the increase in proliferation of NSCs/NPCs during the 1st week after brain ischemia appears to be critical for neuroprotection . Further clarification of the contribution of brain ischemia-induced NSC/NPC amplification in brain protection is critically important because it will provide crucial evidence needed to assist in developing new therapeutic strategies for the treatment of stroke.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, LR. (2015). Neural Stem Cells in Response to Microenvironment Changes Inside and Outside of the Brain. In: Zhao, LR., Zhang, J. (eds) Cellular Therapy for Stroke and CNS Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-11481-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11481-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11480-4

  • Online ISBN: 978-3-319-11481-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics