Advertisement

Categories and Functors

  • George M. Bergman
Part of the Universitext book series (UTX)

Abstract

We define the concepts of category, functor, and morphism of functors (‘natural transformation’). The set-theoretic difficulty in treating cases like the category of all sets is handled using Grothendieck’s Axiom of Universes. Epimorphisms, monomorphisms, and similar concepts are investigated. The concept of “enriched categories” (for example, additive categories) is briefly sketched.

Keywords

Abelian Group Topological Space Mathematical Object Homotopy Class Category Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References 1

  1. 5.
    Andreas Blass, The interaction between category theory and set theory, pp. 5–29 in Mathematical applications of category theory, 1983. MR 85m :03045.Google Scholar
  2. 9.
    Samuel Eilenberg and Saunders Mac Lane, General theory of natural equivalences, Trans. AMS 58 (1945) 231–294. MR 7 109d.Google Scholar
  3. 11.
    Peter Freyd, Abelian Categories, Harper and Row, 1964. Out of print, but accessible online, with a new Foreword, at http://www.tac.mta.ca/tac/reprints/articles/3/tr3.pdf . MR 29 #3517.
  4. 18.
    F. William Lawvere, The category of categories as a foundation for mathematics, pp. 1–20 in Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) ed. S. Eilenberg et al. Springer-Verlag, 1966. MR 34 #7332. (Note corrections to this paper in the MR review.)Google Scholar
  5. 20.
    Saunders Mac Lane, Categories for the Working Mathematician, Springer GTM, v.5, 1971. MR 50 #7275.Google Scholar
  6. 26.
    P. M. Cohn, Algebra, second edition, v. 1, Wiley & Sons, 1982. (first edition, MR 50 #12496) MR 83e :00002.Google Scholar
  7. 29.
    David S. Dummit and Richard M. Foote, Abstract Algebra, Prentice-Hall, 1991. MR 92k :00007.Google Scholar
  8. 30.
    Marshall Hall, Jr., The Theory of Groups, MacMillan, 1959; Chelsea, 1976. MR 21 #1996, MR 54 #2765.Google Scholar
  9. 32.
    Thomas W. Hungerford, Algebra, Springer GTM, v. 73, 1974. MR 50 #6693.Google Scholar
  10. 34.
    Serge Lang, Algebra, Addison-Wesley, third edition, 1993. Reprinted as Springer GTM v. 211, 2002. MR 2003e :00003.Google Scholar
  11. 35.
    Joseph J. Rotman, An Introduction to the Theory of Groups, 4th edition, Springer GTM, v. 148, 1995. MR 95m :20001.Google Scholar
  12. 50.
    George M. Bergman, Supports of derivations, free factorizations, and ranks of fixed subgroups in free groups, Trans. AMS 351 (1999) 1531–1550. MR 99f :20036.Google Scholar
  13. 56.
    George M. Bergman, Notes on composition of maps, supplementary course notes, 6 pp., at http://math.berkeley.edu/~gbergman/grad.hndts/left+right.ps .
  14. 77.
    Solomon Feferman, Set-theoretical foundations of category theory, pp. 201–247 in Reports of the Midwest Category Seminar, Springer LNM, v.106, 1969. MR 40 #2727.Google Scholar
  15. 78.
    Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962) 323–448. MR 38 #1144.Google Scholar
  16. 100.
    Gregory Maxwell Kelly, Basic concepts of enriched category theory, London Math. Soc. Lecture Note Series, 64, 1982, 245 pp. Readable at http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html .
  17. 102.
    E. W. Kiss, L. Márki, P. Pröhle and W. Tholen, Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity, Studia Scientiarum Mathematicarum Hungarica, 18 (1983) 79–141. MR 85k : 18003.Google Scholar
  18. 105.
    A. H. Kruse, Grothendieck universes and the super-complete models of Shepherdson, Compositio Math., 17 (1965) 96–101. MR 31 #4716.Google Scholar
  19. 107.
    T. Y. Lam, Lectures on modules and rings, Springer GTM, v.189, 1999. MR 99i:16001.Google Scholar
  20. 112.
    Saunders Mac Lane, One universe as a foundation for category theory, pp. 192–200 in Reports of the Midwest Category Seminar, Springer LNM, v.106, 1969. MR 40 #2731.Google Scholar
  21. 130.
    Walter Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, 1962. MR 27 #2808.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • George M. Bergman
    • 1
  1. 1.Department of MathematicsUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations