About the Course, and These Notes

  • George M. Bergman
Part of the Universitext book series (UTX)


The nonstandard approach to teaching that I try to follow in the course taught from these notes is discussed, and advice is given on writing up homework (applicable to any advanced math course). Some features of the structure of the book are noted, and some related literature described .


Category Theory Division Ring Universal Algebra General Algebra Partial Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Clifford Bergman, Universal algebra. Fundamentals and selected topics, Pure and Applied Mathematics, 301. CRC Press, 2012. MR2839398Google Scholar
  2. 4.
    Garrett Birkhoff, Lattice Theory, third edition, AMS Colloq. Publications, v. XXV, 1967. MR 37 #2638.Google Scholar
  3. 6.
    Stanley Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer GTM, v.78, 1981. MR 83k :08001.Google Scholar
  4. 8.
    P. M. Cohn, Universal Algebra, second edition, Reidel, 1981. MR 82j :08001.Google Scholar
  5. 9.
    Samuel Eilenberg and Saunders Mac Lane, General theory of natural equivalences, Trans. AMS 58 (1945) 231–294. MR 7 109d.Google Scholar
  6. 11.
    Peter Freyd, Abelian Categories, Harper and Row, 1964. Out of print, but accessible online, with a new Foreword, at . MR 29 #3517.
  7. 12.
    Peter Freyd, Algebra valued functors in general and tensor products in particular, Colloquium Mathematicum (Wrocław) 14 (1966) 89–106. MR 33 #4116.Google Scholar
  8. 13.
    George Grätzer, Universal Algebra, 2nd ed., Springer, 1979. MR 40 #1320, 80g :08001.Google Scholar
  9. 14.
    George Grätzer, Lattice theory: foundation, Birkhäuser/Springer, 2011. MR 2012f:06001.Google Scholar
  10. 19.
    Carl E. Linderholm, Mathematics Made Difficult, World Publishing, N.Y., 1972. (Out of print.) MR 58 #26623.Google Scholar
  11. 20.
    Saunders Mac Lane, Categories for the Working Mathematician, Springer GTM, v.5, 1971. MR 50 #7275.Google Scholar
  12. 21.
    Ralph McKenzie, George McNulty and Walter Taylor, Algebras, Lattices, Varieties, volume 1, Wadsworth and Brooks/Cole, 1987. MR 88e :08001.Google Scholar
  13. 23.
    Richard S. Pierce, Introduction to the Theory of Abstract Algebras, Holt Rinehart and Winston, Athena Series, 1968. MR 37 #2655.Google Scholar
  14. 26.
    P. M. Cohn, Algebra, second edition, v. 1, Wiley & Sons, 1982. (first edition, MR 50 #12496) MR 83e :00002.Google Scholar
  15. 27.
    P. M. Cohn, Algebra, second edition, v. 2, Wiley & Sons, 1989. (first edition, MR 58 #26625) MR 91b :00001.Google Scholar
  16. 28.
    P. M. Cohn, Algebra, second edition, v. 3 Wiley & Sons, 1991. MR 92c :00001.Google Scholar
  17. 29.
    David S. Dummit and Richard M. Foote, Abstract Algebra, Prentice-Hall, 1991. MR 92k :00007.Google Scholar
  18. 32.
    Thomas W. Hungerford, Algebra, Springer GTM, v. 73, 1974. MR 50 #6693.Google Scholar
  19. 34.
    Serge Lang, Algebra, Addison-Wesley, third edition, 1993. Reprinted as Springer GTM v. 211, 2002. MR 2003e :00003.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • George M. Bergman
    • 1
  1. 1.Department of MathematicsUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations