Skip to main content

Modeling Urban Land Use Change: Integrating Remote Sensing with Socioeconomic Data

  • Chapter
  • First Online:
Book cover Computational Approaches for Urban Environments

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 13))

Abstract

Rapid urban development has stimulated the progress in predicting and evaluating urban landscape evolution. As a result of rapid socioeconomic development, the land use pattern of Houston, TX, has undergone significant changes over the past 30 years. It is essential to simulate urbanization processes in Houston to examine where and to what extent landscape change has occurred and further to understand how and why the change can occur. This research developed two cellular automata (CA) models based on the same remote sensing data source: one was based on the classification from Landsat images and another one incorporated the socioeconomic data with the same classification results. The predicted results from these two models suggested that the incorporation of socioeconomic data improved the accuracy in human-intervened landscapes, such as residential and industrial/commercial area. More socioeconomic data and finer data sources were needed to improve the CA model to predict the heterogeneous pattern within urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aljoufie M, Zuidgeest M, Brussel M, Van Vliet J, Van Maarseveen M (2013) A cellular-automata based land use and transport interaction model applied to Jeddah, Saudi Arabia. Landsc Urban Plan 112:89–99

    Article  Google Scholar 

  • An L, Linderman M, Qi J, Shortridge A, Liu J (2005) Exploring complexity in a human-environment system: an agent-based spatial model for multidisciplinary and multiscale integration. Ann Assoc Am Geogr 95(1):54–79

    Article  Google Scholar 

  • Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plan 67:9–26

    Article  Google Scholar 

  • Arsanjani JJ, Helbich M, Kainz W, Darvishi A (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs 21:265–275

    Article  Google Scholar 

  • Batty M, Xie Y (1994) From cells to cities. Environ Plan B 21:31–48

    Article  Google Scholar 

  • Bell EJ (1974) Markov analysis of land use change: an application of stochastic processes to remotely sensed data. Socio Econ Plan Sci 8:311–316

    Article  Google Scholar 

  • Berry MW, Flamm RO, Hazen BC et al (1996) Lucas: a system for modeling land-use change. IEEE Comput Sci Eng 3(1):24–35

    Article  Google Scholar 

  • Bourne LS (1976) Monitoring change and evaluation the impact of planning policy on urban structure: a Marlov chain experiment. Plan Can 16:5–14

    Google Scholar 

  • Cecchini A, Viola F (1990) Eine Stadtbausimulation. Wissenschaftliche Zeltschrift der Hochschule fur Architektur und Bauwesen 36(1):159–162

    Google Scholar 

  • Clarke KC, Hoppen S (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plan B 24:247–261

    Article  Google Scholar 

  • Clarke KC, Gaydos LJ (1998) Loose-coupling a cellular automata model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. Int J Geogr Inf Sci 12(7):699–714

    Article  Google Scholar 

  • De Kong GHJ, Verburg PH, Veldkamp A, Fresco LO (1999) Multi-scale modelling of land use change dynamics in Ecuador. Agr Syst 61:77–93

    Google Scholar 

  • Hagen-Zanker A, Lajoie G (2008) Neutral models of landscape change as benchmarks in the assessment of model performance. Landsc Urban Plan 86:284–296

    Article  Google Scholar 

  • Herold M (2004) Remote sensing and spatial metrics for mapping and modeling of urban structures and growth dynamics. Ph.D. dissertation, University of California-Santa Barbara

    Google Scholar 

  • Herold M, Goldstein NC, Clarke KC (2003) The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sens Environ 86(3):286–302

    Article  Google Scholar 

  • Hillier B, Hanson J (1984) The social logic of space. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Key to the city (2001) Houston, Harris County, Texas. Available at: http://www.usacitiesonline.com/txcountyhouston.htm. Cited 15 Jan 2014

  • Klosterman RE (1999) The what if? Collaborative planning support system. Environ Plan B 26(3):393–407

    Article  Google Scholar 

  • Li X, Yeh AGO (2000) Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int J Geogr Inf Sci 14(2):131–152

    Article  Google Scholar 

  • Lichtenberg ER (1985) The role of land quality in agricultural diversification. Ph.D. dissertation, University of California-Berkeley

    Google Scholar 

  • Liebrand WBG, Nowak A, Hegselmann R (1998) Computer modeling of social process. Sage Publications, London

    Google Scholar 

  • Lopez E, Bocco G, Mendoza M, Duhau E (2001) Predicting land cover and land use change in the urban fringe: a case in Morelia city Mexico. Landsc Urban Plan 55(4):271–285

    Article  Google Scholar 

  • Mcintyre NE, Knowles-Yanez K, Hope D (2000) Urban ecology as an interdisciplinary field: differences in the use of “urban” between the social and natural sciences. Urban Ecosyst 4:5–24

    Article  Google Scholar 

  • Moser DC (1998) Diane Moser Properties. Available online at: http://www.texasbest.com/houston/geograph.html. Cited 15 Jan 2014

  • Palmquist RB (1989) Land as a differentiated factor of production: a Hedonic model and its implications for welfare measurement. Land Econ 65(1):23–28

    Article  Google Scholar 

  • Pickett STA, Burch WR, Dalton SE, Foresman TW, Grove JM, Rowntree R (1997) A conceptual framework for the study of human ecosystems in urban areas. Urban Ecosyst 1:185–199

    Article  Google Scholar 

  • Pijanowski BC, Long DT, Sage SH, Cooper WE (1997) A land transformation model: conceptual elements, spatial object class hierarchies, GIS command syntax and an application to Michigan’s Saginaw Bay Watershed. Land use modeling workshop, Sioux Fall, South Dakota, June 3–5, 1997.

    Google Scholar 

  • Pijanowski BC, Tayyebi A, Doucette J et al (2014) A big data urban growth simulation at a national scale: configuring the GIS and neural network based Land Transformation Model to run in a high performance computing environment. Environ Model Softw 51:250–268

    Article  Google Scholar 

  • Pontius RG Jr, Cheuk ML (2006) A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions. Int J Geogr Inf Sci 20(1):1–30

    Article  Google Scholar 

  • Pontius RG Jr, Shusas E, McEachren M (2004) Detecting important categorical land changes while accounting for persistence. Agric Ecosyst Environ 101:251–268

    Article  Google Scholar 

  • Shafizadeh-Moghadam H, Helbich M (2013) Spatiotemporal urbanization process in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40:140–149

    Article  Google Scholar 

  • Stewart W (1994) Introduction to the numerical solution of Markov chains. Princeton University Press, Princeton

    Google Scholar 

  • Tang J (2011) Modeling urban landscape dynamics using sub-pixel fractions and fuzzy cellular automata. Environ Plann B 38:903–920

    Article  Google Scholar 

  • Tang J, Wang L, Yao Z (2007) Spatio-temporal urban landscape change analysis using Markov chain and modified genetic algorithm. Int J Remote Sens 28(15):3255–3271

    Article  Google Scholar 

  • Tang J, Wang L, Yao Z (2008) Analyses of urban landscape dynamics using multi-temporal satellite images: a comparison of two petroleum-oriented cities. Landsc Urban Plan 87(4):269–278

    Article  Google Scholar 

  • Tang J, Chen F, Schwartz SS (2012) Assessing spatiotemporal variations of greenness in the Baltimore-Washington corridor area. Landsc Urban Plan 105:296–306

    Article  Google Scholar 

  • Tayyebi A, Pijanowski BC, Tayyebi AH (2011) An urban growth boundary model using neural networks, GIS and radial parameterization: an application to Tehran, Iran. Landsc Urban Plan 100(1):35–44

    Article  Google Scholar 

  • Tayyebi A, Pekin BK, Pijanowski BC et al (2012) Hierarchical modeling of urban growth across the conterminous USA: developing meso-scale quantity drivers for the land transformation model. J Land Use Sci 8(4):422–442

    Article  Google Scholar 

  • Tayyebi A, Perry PC, Tayyebi AH (2013) Predicting the expansion of an urban boundary using spatial logistic regression and hybrid raster-vector routines with remote sensing and GIS. Int J Geogr Inf Sci 28:639–659. doi:10.1080/13658816.2013.845892

    Article  Google Scholar 

  • Texas State Historical Association (2002) Handbook of Texas, online. Available at: http://www.tsha.utexas.edu/handbook/omline/articles/view/HH/hdh3.html. Cited 26 Dec 2009

  • Tobler W (1979) Cellular geography. In: Gale G, Olsson S (eds) Philosophy in geography. Reidel, Dordrecht, pp 379–386

    Chapter  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effects of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • US Census (2010) Population and household. Available at: http://www.census.gov. Cited 20 Sep 2013

  • U.S. Census (2011) Your gateway to census 2010. Available at: http://en.wikipedia.org/wiki/Urbanization. Cited 15 Jan 2014

  • Van Vliet J, Bregt AK, Hagen-Zanker A (2011) Revisiting Kappa to account for change in the accuracy assessment of land use change models. Ecol Model 222:1367–1375

    Article  Google Scholar 

  • Van Vliet J, Hurkens J, White R, Van Delden H (2012) An activity based cellular automaton model to simulate land use dynamics. Environ Plan B 39:198–212

    Article  Google Scholar 

  • Vaz E, Nijkamp P, Painho M, Caetano M (2012) A multi-scenario forecast of urban change: a study on urban growth in the Algarve. Landsc Urban Plan 104(2):201–211

    Article  Google Scholar 

  • Waddell P (2002) UrbanSim: modeling urban development for land use, transportation, and environmental planning. J Am Plan Assoc 68(3):297–313

    Article  Google Scholar 

  • Weng Q (2002) Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling. J Environ Manag 64(2):273–284

    Article  Google Scholar 

  • White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns. Environ Plan A 25(8):1175–1199

    Article  Google Scholar 

  • Wu F (1998) Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system. J Environ Manag 53(4):293–308

    Article  Google Scholar 

  • Wu F, Martin D (2002) Urban expansion simulation of Southeast England using population surface modelling and cellular automata. Environ Plan A 34(10):1855–1876

    Article  Google Scholar 

  • Yang X, Lo CP (2002) Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int J Remote Sens 23(9):1775–1798

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmei Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tang, J. (2015). Modeling Urban Land Use Change: Integrating Remote Sensing with Socioeconomic Data. In: Helbich, M., Jokar Arsanjani, J., Leitner, M. (eds) Computational Approaches for Urban Environments. Geotechnologies and the Environment, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-11469-9_12

Download citation

Publish with us

Policies and ethics