Interactive Modeling of Architectural Freeform Structures: Combining Geometry with Fabrication and Statics

  • Caigui Jiang
  • Chengcheng Tang
  • Marko Tomičí
  • Johannes Wallner
  • Helmut Pottmann
Conference paper


This paper builds on recent progress in computing with geometric constraints, which is particularly relevant to architectural geometry. Not only do various kinds of meshes with additional properties (like planar faces, or with equilibrium forces in their edges) become available for interactive geometric modeling, but so do other arrangements of geometric primitives, like honeycomb structures. The latter constitute an important class of geometric objects, with relations to “Lobel” meshes, and to freeform polyhedral patterns. Such patterns are particularly interesting and pose research problems which go beyond what is known for meshes, e.g. with regard to their computing, their flexibility, and the assessment of their fairness.


Equilateral Triangle Honeycomb Structure Circle Packing Spherical Image Design Freedom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by KAUST base funding, NAWI Graz funding, by the DFG-Collaborative Research Center, TRR 109 Discretization in Geometry and Dynamics, through grants I 705 N-26 and I 706-N26 of the Austrian Science Fund (FWF), by FWF project P 23735-N13 and by the European Community’s 7th Framework Programme under grant agreement 286426 (GEMS).


  1. Barnes, M. R.: Form finding and analysis of tension structures by dynamic relaxation. Int. J. Space Struct. 14(2), 89–104 (2009)CrossRefGoogle Scholar
  2. Block, P.: Thrust network analysis: exploring three-dimensional equilibrium. PhD thesis, MIT (2009)Google Scholar
  3. Block, P., Lachauer, L.: Closest-fit, compression-only solutions for free form shells. In: Proceedings of the IABSE – IASS London Symposium, London, 8pp, 2011Google Scholar
  4. Block, P., Ochsendorf, J.: Thrust network analysis: a new methodology for three-dimensional equilibrium. J. Int. Assoc. Shell Spat. Struct. 48(3), 167–173 (2007)Google Scholar
  5. Bouaziz, S., Schwartzburg, Y., Weise, T., Pauly, M.: Shaping discrete geometry with projections. Comput. Graph. Forum 31, 1657–1667 (2012)CrossRefGoogle Scholar
  6. de Goes, F., Alliez, P., Owhadi, H., Desbrun, M.: On the equilibrium of simplicial masonry structures. ACM Trans. Graph. 32(#93), 1–10 (2013)Google Scholar
  7. Deng, B., Bouaziz, S., Deuss, M., Zhang, J., Schwartzburg, Y., Pauly, M.: Exploring local modifications for constrained meshes. Comput. Graph. Forum 32, 11–20 (2013)CrossRefGoogle Scholar
  8. Deng, B., Bouaziz, S., Deuss, M., Kaspar, A., Schwartzburg, Y., Pauly, M.: Interactive design exploration for constrained meshes. Comput.-Aided Des. (2014). doi:10.1016/j.cad.2014.01.004Google Scholar
  9. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N., Pottmann, H., Pauly, M.: Paneling architectural freeform surfaces. ACM Trans. Graph. 29(#45), 1–10 (2010)Google Scholar
  10. Jiang, C., Wang, J., Wallner, J., Pottmann, H.: Freeform honeycomb structures. Comput. Graph. Forum 33(5) (2014). Proc. SGPGoogle Scholar
  11. Lachauer, L., Block, P.: Compression support structures for slabs. In: Hesselgren, L. et al. (eds.) Advances in Architectural Geometry 2012, pp. 135–146. Springer, Vienna (2012)Google Scholar
  12. Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., Wang, W. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25(3), 681–689 (2006)CrossRefGoogle Scholar
  13. Liu, Y., Pan, H., Snyder, J., Wang, W., Guo, B.: Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. 32(#92), 1–10 (2013)Google Scholar
  14. Lobel, A.: Formes et structures engendrées par des éléments identiques, vol. 1–6. A. Lobel, Bourg-la-Reine (1993). ISBN 2-9514254-0-6Google Scholar
  15. Panozzo, D., Block, P., Sorkine-Hornung, O.: Designing unreinforced masonry models. ACM Trans. Graph. 32(#91), 1–12 (2013)Google Scholar
  16. Poranne, R., Ovreiu, E., Gotsman, C.: Interactive planarization and optimization of 3D meshes. Comput. Graph. Forum 32(1), 152–163 (2013)CrossRefGoogle Scholar
  17. Schiftner, A., Balzer, J.: Statics-sensitive layout of planar quadrilateral meshes. In: Ceccato, C. et al. (eds.) Advances in Architectural Geometry 2010, pp. 221–236. Springer, Vienna (2010).CrossRefGoogle Scholar
  18. Schiftner, A., Höbinger, M., Wallner, J., Pottmann, H.: Packing circles and spheres on surfaces. ACM Trans. Graph. 28(#139), 1–8 (2009)Google Scholar
  19. Singh, M., Schaefer, S.: Triangle surfaces with discrete equivalence classes. ACM Trans. Graph. 29(#46), 1–7 (2010)Google Scholar
  20. Tang, C., Sun, X., Gomes, A., Wallner, J., Pottmann, H.: Form-finding with polyhedral meshes made simple. ACM Trans. Graph. 33(#70) (2014). Proc. SIGGRAPHGoogle Scholar
  21. Van Mele, T., Block, P.: A novel form finding method for fabric formwork for concrete shells. J. Int. Assoc. Shell Spatial Struct. 52, 217–224 (2011)Google Scholar
  22. Vouga, E., Höbinger, M., Wallner, J., Pottmann, H.: Design of self-supporting surfaces. ACM Trans. Graph. 31(#87), 1–11 (2012)Google Scholar
  23. Zadravec, M., Schiftner, A., Wallner, J.: Designing quad-dominant meshes with planar faces. Comput. Graph. Forum 29, 1671–1679 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Caigui Jiang
    • 1
  • Chengcheng Tang
    • 1
  • Marko Tomičí
    • 2
  • Johannes Wallner
    • 3
  • Helmut Pottmann
    • 1
    • 4
  1. 1.KAUSTThuwalSaudi Arabia
  2. 2.Waagner Biro StahlbauWienAustria
  3. 3.TU GrazGrazAustria
  4. 4.TU WienWienAustria

Personalised recommendations