Surface Panelization Using Periodic Conformal Maps

Conference paper


We present a new method to obtain periodic conformal parameterizations of surfaces with cylinder topology and describe applications to architectural design and rationalization of surfaces. The method is based on discrete conformal maps from the surface mesh to a cylinder or cone of revolution. It accounts for a number of degrees of freedom on the boundary that can be used to obtain a variety of alternative panelizations. We illustrate different choices of parameters for nurbs surface designs. Further, we describe how our parameterization can be used to get a periodic boundary aligned hex-mesh on a doubly-curved surface and show the potential on an architectural facade case study. Here we optimize an initial mesh in various ways to consist of a limited number of planar regular hexagons that panel a given surface.


Edge Length Boundary Vertex Freeform Surface Triangle Mesh Interior Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Boris Springborn for sharing his knowledge on discrete conformal maps and the anonymous referees for their comments. Thilo Rörig and Stefan Sechelmann are supported by SFB/TR 109: Discretization in Geometry and Dynamics and DFG Research Center Matheon.


  1. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’00), New Orleans, pp. 157–164. ACM/Addison-Wesley, New York (2000)Google Scholar
  2. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page (2011).
  3. Benson, S., McInnes, L. C., Moré, J., Munson, T., Sarich, J.: TAO user manual (revision 1.9) (2007).
  4. Bo, P., Pottmann, H., Kilian, M., Wang, W., Wallner, J.: Circular arc structures. ACM Trans Graph. 30(#101), 1–11 (2011). Proc. SIGGRAPHGoogle Scholar
  5. Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-integer quadrangulation. In ACM SIGGRAPH 2009 Papers (SIGGRAPH ’09), New Orleans, pp. 77:1–77:10. ACM, New York (2009).Google Scholar
  6. Glymph, J., Shelden, D., Ceccato, C., Mussel, J., Schober, H.: A parametric strategy for free-form glass structures using quadrilateral planar facets. Autom. Constr. 13(2), 187–202 (2004). Conference of the Association for Computer Aided Design in ArchitectureGoogle Scholar
  7. McNeel. Paneling tool documentation (2014).
  8. Nieser, M., Palacios, J., Polthier, K., Zhang, E.: Hexagonal global parameterization of arbitrary surfaces. IEEE Trans. Vis. Comput. Graph. 18(6), 865–878 (2012)CrossRefGoogle Scholar
  9. Schiftner, A., Höbinger, M., Wallner, J., Pottmann, H.: Packing circles and spheres on surfaces. ACM Trans. Graph. 28(5), #139,1–8 (2009). Proc. SIGGRAPH AsiaGoogle Scholar
  10. Sechelmann, S., Rörig, T.: VaryLab web page (2013).
  11. Sechelmann, S., Rörig, T., Bobenko, A.I.: Quasiisothermic mesh layout. In Hesselgren, L., Sharma, S., Wallner, J., Baldassini, N., Bompas, P., Raynaud, J. (eds.) Advances in Architectural Geometry 2012, pp. 243–258. Springer, Vienna (2013)CrossRefGoogle Scholar
  12. Sommer, H.: JpetscTao, JNI wrapper (2010).
  13. Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27(3), 77:1–77:11 (2008)Google Scholar
  14. Troche, C.: Planar hexagonal meshes by tangent plane intersection. In: Advances in Architectural Geometry 2008, pp. 57–64. Springer, Vienna (2008)Google Scholar
  15. Zimmer, H., Campen, M., Herkrath, R., Kobbelt, L.: Variational tangent plane intersection for planar polygonal meshing. In: Hesselgren, L., Sharma, S., Wallner, J., Baldassini, N., Bompas, P., Raynaud, J. (eds.) Advances in Architectural Geometry 2012, pp. 319–332. Springer, Vienna (2013).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany
  2. 2.HENN ResearchHENN ArchitektenMunichGermany

Personalised recommendations