Skip to main content

A Graph-Based Approach for Discovery of Stable Deconstruction Sequences

  • Conference paper
  • First Online:
Advances in Architectural Geometry 2014

Abstract

The aim of object pile deconstruction is to safely remove elements one by one without compromising stability. The number of combinations of removal sequences increases dramatically with the number of objects and thus testing every combination is intractable in practical scenarios. We model the deconstruction sequencing problem using a disassembly graph, and investigate and discuss search strategies for discovery of stable sequences in an architectural context. We run and compare techniques in a large-scale experiment, on various virtual scenes of architectural models composed of different shapes, sizes and number of elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, S., Murayama, T., Oba, F., Narutaki, N.: Stability check and reorientation of subassemblies in assembly planning. IEEE Int. Conf. Syst. Man Cybern. 2, 486–491 (1999)

    Google Scholar 

  • Buro, M.: Improving heuristic mini-max search by supervised learning. Artif. Intell. 134(1–2), 85–99 (2002)

    Article  MATH  Google Scholar 

  • Campbell, M., Joseph Hoane, Jr., A., Hsu, F.-H.: Deep blue. Artif. Intell. 134(1–2), 57–83 (2002)

    Google Scholar 

  • Erleben, K.: Velocity-based shock propagation for multibody dynamics animation. ACM Trans. Graph. 26(2), 12 (2007)

    Article  Google Scholar 

  • Guendelman, E., Bridson, R., Fedkiw, R. Nonconvex rigid bodies with stacking. ACM Trans. Graph. 22(3), 871–878 (2003)

    Article  Google Scholar 

  • Guo, J., Yan, D.-M., Li, E., Dong, W., Wonka, P., Zhang, X.: Illustrating the disassembly of 3D models. Comput. Graph. 37(6), 574–581 (2013)

    Article  Google Scholar 

  • Hopcroft, J., Tarjan, R.: Efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  • Hsu, S.-W., Keyser, J.: Piles of objects. ACM Trans. Graph. 29(6), 155:1–155:6 (2010)

    Google Scholar 

  • Hsu, S.-W., Keyser, J.: Automated constraint placement to maintain pile shape. ACM Trans. Graph. 31(6), 150:1–150:6 (2012)

    Google Scholar 

  • Ikeuchi, K., Horn, B.K., Nagata, S., Tom, Callahan, T., Feingold, O.: Picking up an object from a pile of objects. In: Proceedings of the First International Symposium on Robotics Research, pp. 139–166. MIT, Massachusetts (1983)

    Google Scholar 

  • Katz, D., Venkatraman, A., Kazemi, M., Bagnell, J.A., Stentz, A. Perceiving, learning, and exploiting object affordances for autonomous pile manipulation. In: Robotics Science and Systems Conference, 2013

    Google Scholar 

  • Kaufman, D.M., Edmunds, T., Pai, D.K. Fast frictional dynamics for rigid bodies. ACM Trans. Graph. 24(3), 946–956 (2005)

    Article  Google Scholar 

  • Lambert, A.F., Gupta, S.M.: Disassembly Modeling for Assembly, Maintenance, Reuse and Recycling. CRC (2005)

    MATH  Google Scholar 

  • Lambert, A.J.D.: Disassembly sequencing: A survey. Int. J. Prod. Res. 41, 16 (2003)

    Article  Google Scholar 

  • Livesley, R.K.: Limit analysis of structures formed from rigid blocks. Int. J. Numer. Methods Eng. 12(12), 1853–1871 (1978)

    Article  MATH  Google Scholar 

  • Loomis, A., Balkcom, D.J.: Computation reuse for rigid-body dynamics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, pp. 4181–4186, 2006

    Google Scholar 

  • Panozzo, D., Block, P., Sorkine-Hornung, O.: Designing unreinforced masonry models. ACM Trans. Graph. 32(4), 91:1–91:12 (2013)

    Google Scholar 

  • Schaeffer, J.: One Jump Ahead: Challenging Human Supremacy in Checkers. Springer, New York (1997)

    Book  Google Scholar 

  • Schwartzburg, Y., Pauly, M.: Design and optimization of orthogonally intersecting planar surfaces. In: Computational Design Modelling Symposium, Berlin, pp. 191–199, 2012

    Google Scholar 

  • Schwartzburg, Y., Pauly, M.: Fabrication-aware design with intersecting planar pieces. Comput. Graph. Forum (Proc. Eurograph.) 32, 2 (2013)

    Google Scholar 

  • Wang, J., Rogers, P.D., Parker, L.T., Brooks, D.A., Stilman, M.: Robot Jenga: Autonomous and strategic block extraction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, pp. 5248–5253, 2009

    Google Scholar 

Download references

Acknowledgements

We thank Daniele Panozzo and Philippe Block for providing the architectural masonry models. Emily Whiting was supported by the ETH Zurich/Marie Curie COFUND Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Beyeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Beyeler, L., Bazin, JC., Whiting, E. (2015). A Graph-Based Approach for Discovery of Stable Deconstruction Sequences. In: Block, P., Knippers, J., Mitra, N., Wang, W. (eds) Advances in Architectural Geometry 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-11418-7_10

Download citation

Publish with us

Policies and ethics