Skip to main content

Some Critical Interpretations and Misinterpretations of Lunar Features

  • Chapter
  • First Online:
The Twin Sister Planets Venus and Earth
  • 961 Accesses

Abstract

This somewhat lengthy chapter is a series of “vignettes” concerning certain concepts or features of solar system science. A “vignette” for our purposes is defined as “a short literary composition characterized by compactness, subtlety, and delicacy”.

…its present face still bears scars and traces of many events which took place in the inner precincts of the solar system not long after its formation. If so, this should make our Moon the most important fossil of the solar system and a correct interpretation of its stony palimpsest should bring rich scientific rewards.

(Zdenek Kopal, 1973, The Solar System: Oxford University Press, p. 82.)

Urey felt that the Moon might well be a primitive body, formed in the early days of the solar system. If this were so, the record of its early history preserved on the surface of the Moon, would provide invaluable clues to the origin and evolution of other bodies of the solar system as well.

(Homer E. Newell, 1973, Harold Urey and the Moon: The Moon, v. 7, p. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albarede F (2009) Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461:1227–1233

    Google Scholar 

  • Albarede F, Juteau M (1984) Unscrambling the lead model ages. Geochim Cosmochim Acta 48:207–212

    Google Scholar 

  • Alexander CM O’D, Bowden R, Fogel ML, Howard KT, Herd CDK, Nittler LR (2012) The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721–723

    Google Scholar 

  • Amelin YA (2005) A tale of early earth told in zircons. Science 310:1914–1915

    Google Scholar 

  • Anderson DL (1972) The origin of the Moon. Nature 239:263–265

    Google Scholar 

  • Anderson DL (1973) The Moon as a high-temperature condensate. The Moon 8:33–57

    Google Scholar 

  • Anderson DL (1975) On the composition of the lunar interior. J Geophys Res 80:1555–1557

    Google Scholar 

  • Baadsgaard H, Lambert R St J, Krupicka J (1976) Mineral isotope age relationships in the polymetamorphic Amitsoq gneisses, Godthaab district, West Greenland. Geochim Cosmochim Acta 40:513–537

    Google Scholar 

  • Bedard JH (2006) A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta 70:1188–1214

    Google Scholar 

  • Bell EA, Harrison TM, McCulloch MT, Young ED (2011) Early Archean crustal evolution of the Jack hills zircon source terrane inferred from Lu-Hf, 207Pb/206Pb and delta 18O systematics of Jack hills zircons. Geochim Cosmochim Acta 75:4816–4829

    Google Scholar 

  • Besse S, Sunshine JM, Gaddis LR (2014) Volcanic glass signatures in spectroscopic survey of newly proposed lunar pyroclastic deposits. J Geophys Res Planet 119:355–372

    Google Scholar 

  • Black LP, Gale NH, Moorboth S, Panhurst RJ, McGregor VR (1971) Isotopic dating of very early Precambrian amphibolite facies gneisses from the Godthaab district, West Greenland. Earth Planet Sci Lett 12:245–259

    Google Scholar 

  • Bostrom RC (2000) Tectonic consequences of earth’s rotation. Oxford University Press, London, p 266

    Google Scholar 

  • Bowin C, Simon B, Wollenhaupt WR (1975) Mascons: a two-body solution. J Geophys Res 80:4947–4955

    Google Scholar 

  • Cadogan PH (1974) Oldest and largest lunar basin?. Nature 250:315–316

    Google Scholar 

  • Campins H, Hargrove K, Pinilla-Alonso N, Howell ES, Kelly MS, Licandro J, Mothe-Diniz T, Fernandez Y, Ziffer J (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature 464:1320–1321

    Google Scholar 

  • Canup RM (2004a) Dynamics of lunar formation. Annu Rev Astron Astrophys 42:441–475

    Google Scholar 

  • Canup RM (2004b) Origin of the terrestrial planets and the Earth-Moon system. Phys Today 57(4):56–62

    Google Scholar 

  • Canup RM (2008) Lunar-forming collisions with pre-impact rotation. Icarus 196:518–538

    Google Scholar 

  • Chapman CR, Cohen BA, Grinspoon DH (2007) What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus 189:233–245

    Google Scholar 

  • Charnoz S, Morbidelli A, Dones L, Salmon J (2009) Did Saturn’s rings form during the Late Heavy Bombardment? Icarus 109:413–428

    Google Scholar 

  • Cisowski SM, Fuller M (1983) Lunar sample magnetic stratigraphy. Abstracts of the 14th lunar and planetary science conference. Lunar and Planetary Institute, Houston, p 115–116

    Google Scholar 

  • Cisowski SM, Collinson DW, Runcorn SK, Stephenson A, Fuller M (1983) A review of lunar paleointensity data and implications for the origin of lunar magnetism. Proceedings of the 13th lunar and planetary science conference. J Geophys Res Supplement 88:A691–A704

    Google Scholar 

  • Clark JT, Prange R, Ballester GE, Trauger J et al (1995) HST far-ultraviolet imaging of Jupiter during the impacts of Shoemaker-Levy 9. Science 267:1302–1307

    Google Scholar 

  • Cloud PE (1968) Atmospheric and hydrospheric evolution on the primitive Earth. Science 160:729–736

    Google Scholar 

  • Cloud PE (1972) A working model of the primitive earth. Am J Sci 272:537–548

    Google Scholar 

  • Conel JE, Holstrom GB (1968) Lunar mascons: a near-surface interpretation. Science 162:1403–1404

    Google Scholar 

  • Conway BA (1986) Stability and evolution of primeval lunar satellite orbits. Icarus 66:324–329

    Google Scholar 

  • Cooper G, Horz F, Spees A, Chang S (2014) Highly stable meteoritic organic compounds as markers of asteroidal delivery. Earth Planet Sci Lett 385:206–215

    Google Scholar 

  • Cyr KE, Sears WD, Lunine JI (1998) Distribution and evolution of water ice in the solar nebula: implications for solar system body formation. Icarus 135:537–548

    Google Scholar 

  • Dalrymple GB, Ryder G (1993) Ar-40/Ar-39 age spectra of Apollo 15 impact melt rocks by laser step-heating and their bearing on the history of lunar basin formation. J Geophys Res 98:13085–13095

    Google Scholar 

  • Dalrymple GB, Ryder G (1996) Ar-40/Ar-39 age spectra of Apollo 17 highlands breccia samples by laser step-heating and age of the Serenitatis basin. J Geophys Res 101:26069–26084

    Google Scholar 

  • Darling JR, Moser DE, Heaman LM, Davis WJ, O’Neil J, Carlson R (2013) Eoarchean to Neoarchaen evolution of the Nuvvuagittuq supracrustal belt: new insights from U-Pb zircon geochronology. Am J Sci 313:844–876

    Google Scholar 

  • Dauphas N (2003) The dual origin of the terrestrial atmosphere. Icarus 165:326–339

    Google Scholar 

  • Dauphas N (2013) Sulpher from heaven and hell. Nature 501:175–176

    Google Scholar 

  • Dauphas N, Marty B (2002) Inferences on the nature and mass of Earth’s late veneer from noble metals and gases. J Geophys Res 107(E12):5129–5135

    Google Scholar 

  • Dauphas N, Robert F, Marty B (2000) The late asteroidal and cometary bombardment of earth as recorded in water deuterium to protium ratio. Icarus 148:508–512

    Google Scholar 

  • Day JMD, Pearson DG, Taylor LA (2007) Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system. Science 515:217–219

    Google Scholar 

  • Dietz RS (1946) The meteoritic impact origin of the Moon’s surface features. J Geol 54:359–375

    Google Scholar 

  • Donahue TM (1999) New analysis of hydrogen and deuterium escape from Venus. Icarus 141:226–235

    Google Scholar 

  • Donahue TM, Hoffman JH, Hodges RR Jr, Watson AJ (1982) Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216:630–633

    Google Scholar 

  • Drake MJ, Righter, K (2002) Determining the composition of the Earth. Nature 416:39–44

    Google Scholar 

  • Farinella P, Gonczi R, Froeschle Ch, Froeschle C (1993) The injections of asteroid fragments into resonances. Icarus 101:174–187

    Google Scholar 

  • Franz J (1912) Der Mond, 2 edn. Leipzig, BG Teubner, pp 120

    Google Scholar 

  • Franz J (1913) Nova Acta, Abh. Der Kaiserl. Leop. Deutschen Akademie der naturforscher, 99, 1. Halle

    Google Scholar 

  • Frei R, Rosing MT (2005) Search for traces of the late heavy bombardment on Earth––Results from high precision chromium isotopes. Earth Planet Sci Lett 236:28–40

    Google Scholar 

  • Gaddis LR, Staid MI, Tyburczy JA, Hawke BR, Petro NE (2003) Compositional analyses of lunar pyroclastic deposits. Icarus 161:262–280

    Google Scholar 

  • Gast PW (1972) The chemical composition and structure of the Moon. The Moon 5:121–148

    Google Scholar 

  • Gault DE, Widekind JA (1978) Experimental studies of oblique impacts. Proceedings of the 9th Lunar and Planetary Science Conference. Pergamon Press, London, pp 3843–3875

    Google Scholar 

  • Goldich SS, Hedge CE (1974) 3,800-Myr granitic gneiss in south-western Minnesota. Nature 252:467–468

    Google Scholar 

  • Gottlieb P, Muller PM, Sjogren WL (1969) Nonexistence of large mascons at Mare Marginis and Mare Orientale. Science 166:1145–1147

    Google Scholar 

  • Griffin WL, Belousova EA, O’Neill C, O’Reilly SY, Malkovets V, Person NJ, Spetsius S, Wilde SA (2014) The world turns over: Hadean-Archean crust-mantle evolution. Lithos 189:2–15

    Google Scholar 

  • Gustafson JO, Bell JF III, Gaddis LR, Hawke BR, Giguere TA (2012) Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter camera data. J Geophys Res 117:21. doi:10.1029/2011JE003893-21

    Google Scholar 

  • Harrison TM (2009) The Hadean crust: evidence from ≥  4 Ga zircons. Annu Rev Earth Planet Sci 37:479–505

    Google Scholar 

  • Hartmann WK (1977a) Cratering in the solar system. Sci Am 236(1):84–99

    Google Scholar 

  • Hartmann WK (1977b) Relative crater production on planets. Icarus 31:260–276

    Google Scholar 

  • Hartmann WK, Wood CA (1971) Moon: origin and evolution of multi-ring basins. Moon 3:4–78

    Google Scholar 

  • Head JW (1982) Lava flooding of ancient planetary crusts: geometry, thickness, and volumes of flooded lunar impact basins. Moon Planet 26:61–88

    Google Scholar 

  • Humayun M, Clayton, RN (1995) Potassium isotope cosmochemistry: genetic implications of volatile element depletion. Geochim Cosmochim Acta 59:2131–2148

    Google Scholar 

  • Hutsemekers D, Manfroid J, Jehin E, Arpigny C (2009) New constraints on the delivery of cometary water and nitrogen to Earth from the 15N/14N isotopic ratio. Icarus 204:346–348

    Google Scholar 

  • Holsapple KA, Michel P (2006) Tidal disruptions. A continuum theory for solid bodies. Icarus 183:331–348

    Google Scholar 

  • Holsapple KA, Michel P (2008) Tidal disruptions: II. A continuum theory for solid bodies with strength, with applications to the solar system. Icarus 193:283–301

    Google Scholar 

  • Jacquet E, Robert F (2013) Water transport in protoplanetary disks and the hydrogen isotope composition of chondrites. Icaurs 223:722–732

    Google Scholar 

  • Janle P (1981) A crustal gravity model for the Mare Serenitatis—Mare Crisium area of the Moon. J Geophys 49:57–65

    Google Scholar 

  • Kaula WM (1969) Interpretation of lunar mass concentrations. Phys Earth Planet Inter 2:123–137

    Google Scholar 

  • Kerr RA (2000) Beating up on a young earth and possibly life (News Focus). Science 290:1677

    Google Scholar 

  • Koeberl C (2006) Impact processes on the early earth. Elements 2:211–216

    Google Scholar 

  • Kring DA, Cohen BA (2002) Cataclysmic bombardment throughout the inner solar system ­3.9–4.0 Ga. J Geophys Res 107:6. doi:E2. 10.1029/2001JE001529–6

    Google Scholar 

  • Kunze AWG (1974) Lunar mascons: another model and its implications. Moon 11:9–17

    Google Scholar 

  • Kunze AWG (1976) Evidence for isostasy in lunar mascon maria. Moon 15:415–419

    Google Scholar 

  • Labidi J, Cartigny P, Moreira M (2013) Non-chrondritic sulphur isotope composition of the terrestrial mantle. Nature 501:208–211

    Google Scholar 

  • Lawrence SJ, Stopar JD, Hawke BR, et al (2013) LRO observations of morphology and surface roughness of volcanic cones and lobate lava flows in the Marius Hills. J Geophys Res: Planets 118:615–634

    Google Scholar 

  • Lena R, Fitzgerald B (2014) On a volcanic construct and a lunar pyroclastic deposit (LPD) in northern Mare Vaporum. Planet Space Sci 92:1–15

    Google Scholar 

  • Lena R, Fitzgerald B (2014) On a volcanic construct and a lunar pyroclastic deposit (LPD) in northern Mare Vaporum. Planet Space Sci 92:1–15

    Google Scholar 

  • Lipskii YuN (1965) Zond-3 photography of the moon’s far side. Sky Telesc 30:338–341

    Google Scholar 

  • Lipskii YuN, Rodionova ZhF (1977) Antipodes on the Moon, in the Soviet-American Conference on Cosmochemistry of the Moon and the Planets. pp 755–761

    Google Scholar 

  • Lipskii YuN, Pskovskii Yu P, Gurshtein AA, Shevchenko VV, Pospergelis MM (1966) Current problems of the morphology of the moon’s surface. Kosmicheskie Issledovaniya 4(6):912–922 (Translated to English at a later date)

    Google Scholar 

  • Lodders K, Fegley B Jr (1998) The planetary scientist’s campanion. Oxford University Press, Oxford, pp 371

    Google Scholar 

  • Mackin JH (1969) Origin of lunar maria. Geol Soc Am Bull 80:735–748

    Google Scholar 

  • Malcuit RJ, Byerly GR, Vogel TA, Stoeckley TR (1975) The great-circle pattern of large circular maria: product of an Earth-Moon encounter. Moon 12:55–62

    Google Scholar 

  • Malcuit RJ, Winters RR, Mickelson ME (1977) Is the Moon a captured body? Abstracts Volume, Eight Lunar Science Conference, Houston, p 608–610

    Google Scholar 

  • Malcuit RJ, Mehringer, DM, Winters RR (1988) Computer simulation of “intact” gravitational capture a lunar-like body by an Earth-like body: Abstract Volume, Lunar and Planetary Science XIX, Lunar and Planetary Institute, Houston, pp 718–719

    Google Scholar 

  • Malcuit RJ, Mehringer DM, Winters RR (1989) Numerical simulation of gravitational capture of a lunar-like body by earth. Proceedings of the 19th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, pp 581–591

    Google Scholar 

  • Malcuit RJ, Mehringer DM, Winters RR (1992) A gravitational capture origin for the Earth-Moon system: implications for the early history of the earth and moon. In: Glover JE, Ho SE (eds) The Archaean. Terrains, processes and metallogeny. Proceedings volume, 3rd international archaean conference, vol 22. Univeristy of Western Australia Publication, Crawley, pp 223–235

    Google Scholar 

  • Matter A, Guillot T, Morbidelli A (2009) Calculation of the enrichment of the giant planet envelopes during the “late heavy bombardment”. Planet Sp Sci 57:816–821

    Google Scholar 

  • McSween HY Jr (1999) Meteorites and their parent bodies, 2nd edn. Cambridge University Press, Cambridge, p 310

    Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, London, p 245

    Google Scholar 

  • Mizuno H, Boss AP (1985) Tidal disruption of dissipative planetesimals. Icarus 63:109–133

    Google Scholar 

  • Moore HJ (1976) Missile impact craters (White Sands Missile Range, New Mexico) and applications to lunar research. U. S. Geol Surv Prof Pap 812–B:47

    Google Scholar 

  • Morbidelli A, Chambers J, Lunine JI, Petit JM, Robert F, Valsecchi GB, Cyr KE (2000) Source regions and time scales for delivery of water to earth. Meteorit Planet Sci 35:1309–1320

    Google Scholar 

  • Mueller PA, Wooden JL, Nutman AP (2009) U-Pb ages (3.8–2.7 Ga) and Nd isotope data from the newly identified Eoarchean Nuvvuagittuq supracrustal belt, Superior Craton, Canada. Geol Soc Am Bull 121:150–163

    Google Scholar 

  • Muller PM, Sjogren WL, Wollenhaupt WR (1973) Lunar shape via the Apollo laser altimeter. Science 179:275–278

    Google Scholar 

  • Mutch TA (1972) Geology of the moon: a stratigraphic view. Princeton University Press, Princeton, p 391

    Google Scholar 

  • Naeraa T, Schersten A, Rosing MT, Kemp AIS, Hoffman JE, Kokfelt TF, Whitehouse MJ (2012) Hafnium isotope evidence for a transition in the dynamics of continental grouth 3.2 Gyr ago. Nature 485:627–630

    Google Scholar 

  • Nash DB (1963) On the distribution of lunar maria and the synchronous rotation of the Moon. Icarus 1:372–373

    Google Scholar 

  • Nebel O, Rapp RP, Yaxley GM (2014) The role of detrital zircons in Hadean crustal research. Lithos 190–191:313–327

    Google Scholar 

  • Nuth JA (2008) What was the volatile composition of the planetesimals that formed the earth? Earth Moon Planets 102:435–445

    Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL, Hidaka H, Yi K, Ryeollee S, Kamiichi T (2013) The Itsaq gneiss complex of Greenland: episodic 3900 to 3660 Ma juvenile crust formation and recycling in the 3660 to 3600 Ma Isukasian orogeny. Am J Sci 313:877–911

    Google Scholar 

  • Nyquist LE, Shih CY (1992) The isotopic record of lunar volcanism. Geochim Cosmochim Acta 56:2213–2234

    Google Scholar 

  • O’Neil J, Francis D, Carlson RW (2011) Implications of the Nuvvuagittuq greenstone belt for the formation of earth’s early crust. J Petrol 52:985–1009

    Google Scholar 

  • O’Neil J, Carlson RW, Paquette J-L, Francis D (2012) Formation age and metamorphic history of the Nuvvuagittuq greenstone belt. Precambrian Res 220–221:23–44

    Google Scholar 

  • O’Neil C, Debaille V, Griffin W (2013a) Deep earth recycling in the Hadean and constraints on surface tectonics. Am J Sci 313:912–932

    Google Scholar 

  • O’Neil J, Boyet M, Carlson RW, Paquette J-L (2013b) Half a billion years of reworking of Hadean mafic crust to produce the Nuvvuagittuq eoarchean felsic crust. Earth Planet Sci Lett 379:13–25

    Google Scholar 

  • Owen T, Bar-Nun A (1998) From the interstellar medium to planetary atmospheres via comets: Faraday Discussions No. 109:453–462

    Google Scholar 

  • Pearce JA (2014) Geochemical fingerprinting of the Earth’s oldest rocks. Geology 42:175–176

    Google Scholar 

  • Pidgeon RT, Nemchin AA, van Bronswijk W, Geisler T, Meyer C, Compston W, Williams JS (2007) Complex history of a zircon aggregate from lunar breccia 73235. Geochimi Cosmochim Acta 71:1370–1381

    Google Scholar 

  • Raymond SN, Schlichting HE, Hersant F, Selsis F (2013) Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226:671–681

    Google Scholar 

  • Rivkin AS, Emery JP (2010) Detection of ice and organics on an asteroidal surface. Nature 464:1322–1323

    Google Scholar 

  • Rizo H, Boyet M, Blichert-Toft J, Rosing MT (2013) Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland. Earth Planet Sci Lett 377–378:324–335

    Google Scholar 

  • Robert F (2001) The origin of water on earth. Science 293:1056–1058

    Google Scholar 

  • Runcorn SK (1983) Lunar magnetism, polar displacements and primeval satellites in the Earth-Moon system. Nature 304:589–596

    Google Scholar 

  • Russell CT (1980) Planetary Magnetism. Rev Geophys Space Phys 18:77–106

    Google Scholar 

  • Ryder G (1990) Lunar samples, lunar accretion and the early bombardment of the Moon. Trans Am Geophys Union 71(10):313, 322–323

    Google Scholar 

  • Ryder G (2002) Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on earth. J Geophys Res. 107:14. doi:(E-4) 10.1029/2001KE 001583

    Google Scholar 

  • Ryder G, Taylor GJ (1976) “Pre-mare” volcanism: Abstracts of the 7th lunar and planetary science conference, Lunar and Planetary Institute, Houston, pp 755–757

    Google Scholar 

  • Saager R, Koppel V (1976) Lead isotopes and trace elements from sulfides of Archean greenstone belts in South Africa—a contribution to the knowledge of the oldest known mineralizations. Econ Geol 71:44–57

    Google Scholar 

  • Salmeron R, Ireland TR (2012) Formation of chondrules in magnetic winds blowing through the pro-to-asteroid belt. Earth Planet Sci Lett 327–328:61–67

    Google Scholar 

  • Schoenberg R, Kamber BS, Collerson KD, Moorbath S (2002) Tungsten isotope evidence from ~3.8 Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature 418:403–405

    Google Scholar 

  • Schultz PH (1976) Moon morphology. University of Texas press, Austin, p 626

    Google Scholar 

  • Shultz PH, Gault DE (1990) Prolonged global catastrophes from oblique impacts. In: Sharpton VL, Ward PD (eds) Global catastropies in earth history. Geological Society of America Special Paper 247, Boul-der, CO, pp 239–261

    Google Scholar 

  • Schultz PH, Gault DE (1991) Impact decapitation from laboratory to basin scales: Abstracts, 22nd lunar and planetary science conference, Lunar and Planetary Institute, Houston, pp 1195–119

    Google Scholar 

  • Schultz PH, Lutz-Garahan AB (1982) Grazing impacts on Mars: a record of lost satellites: Proceedings of the 13th lunar and planetary science conference, Lunar and Planetary Institute, Houston, pp A84–A96

    Google Scholar 

  • Shu FH, Shang H, Glassgold AE, Lee T (1997) X-rays and fluctuating X-Winds from protostars. Science 277:1475–1479

    Google Scholar 

  • Shu FH, Shand H, Gounelle M, Glassgold AE, Lee T (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys J 548:1029–1050

    Google Scholar 

  • Singer SF (1970) How did Venus loose its angular momentum? Science 170:1196–1198

    Google Scholar 

  • Sjogren WL, Wollenhaupt WR (1973) Lunar shape via the Apollo laser altimeter. Science 179:275–278

    Google Scholar 

  • Smoluchowski R (1973a) Lunar tides and magnetism. Nature 242:516–517

    Google Scholar 

  • Smoluchowski R (1973b) Magnetism of the moon. Moon 7:127–131

    Google Scholar 

  • Spudis PD, McGovern PJ, Kiefer, WS (2013) Large shield volcanoes on the Moon. J Geophys Res: Planets 118:1063–1081

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Google Scholar 

  • Stuart-Alexander DE, Howard KA (1970) Lunar maria and circular basins—a review. Icarus 12:440–456

    Google Scholar 

  • Taylor SR (1975) Lunar science: A post-Apollo view. Pergamon Press, New York, p 372

    Google Scholar 

  • Taylor SR (1982) Planetary science: a lunar perspective. Lunar and Planetary Institute, Houston, p 481

    Google Scholar 

  • Taylor SR (1998) Destiny or chance. Our solar system and its place in the cosmos. Cambridge University Press, Cambridge, p 229

    Google Scholar 

  • Taylor SR (2001) Solar system evolution: a new perspective, 2nd edn. Cambridge University Press, ­Cambridge, p 460

    Google Scholar 

  • Tera F, Papanastassiou DA, Wasserburg GJ (1974) Isotopic evidence for a terminal lunar ­cataclysm. Earth Planet Sci Lett 22:1–21

    Google Scholar 

  • Trail D, Mojzsis SJ, Harrison TM (2007) Thermal events documented in Hadean zircons by ion microprobe depth profiles. Geochim Cosmochim Acta 71:4044–4065

    Google Scholar 

  • Turner S, Rushmer T, Reagan M, Moyen J-F (2014) Heading down early on? Start of subduction on earth. Geology 42:139–142

    Google Scholar 

  • Ulrich GE, Hodges CA, Muehlberger WR (eds) (1981) Geology of the Apollo 16 area, Central Lunar Highlands. USGS Professional Paper 1048, 539 p. (12 plates)

    Google Scholar 

  • Valley JW (2006) Early earth. Elements 2:201–204

    Google Scholar 

  • Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354

    Google Scholar 

  • Wang Z, Becker H (2013) Ratios of S, Se and Te in the silicate earth require a volatile-rich late veneer. Nature 499:328–331

    Google Scholar 

  • Wasserburg GJ, Papanastassiou DA, Tera F, Huneke JC (1977) Outline of a lunar chronology. Philos Trans R Soc Lond A 285:7–22

    Google Scholar 

  • Wetherill GW (1981) Nature and origin of basin-forming projectiles, In: Schultz PH, Merrill RB (eds) Multi-ring basins: proceedings of the lunar and planetary science conference. 12A:1–18

    Google Scholar 

  • Wichman RW, Schultz PH (1994) The Crisium basin. Implications of an oblique impact for basin ring formation and cavity collapse, In: Dressler BO, Greive RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution. Geological Society of America Special Paper 293, pp 61–72

    Google Scholar 

  • Wilhelms DE (1987) The geologic history of the moon: U. S. Geological Survey Professional Paper 1348, p 302

    Google Scholar 

  • Wilhelms DE (1993) To a rocky moon: a geologist’s history of lunar exploration. The University of Arizona Press, Tucson, p 477

    Google Scholar 

  • Windley BF (1984) The evolving continents, 2nd edn. Wiley, New York, p 399

    Google Scholar 

  • Zeh A, Gerdes A, Klemd R, Barton JM Jr (2008) U-Pb and Lu-Hf isotope record of detrital zircon grains from the Limpopo belt—evidence for crustal recycling at the Hadean to early-Archean transition. Geochim Cosmochim Acta 72:5304–5329

    Google Scholar 

  • Zeh A, Stern RA, Gerdes, A (2014) The oldest zircons of Africa—their U-Pb-Hf-O isotope and trace element systematics and implications for Hadean to Archean crust-mantle evolution. Precambrian Res 241:203–230

    Google Scholar 

Lunar Geologic Maps Cited

  • Lucchitta BK (1978) Geologic map of the north side of the moon. United States Geological Survey, Mis-cellaneous Investigations Series, Map I-1062

    Google Scholar 

  • Scott DH, McCauley JF, West MN (1977) Geologic map of the west side of the moon. United States Geological Survey, Misccellaneous Investigations Series, Map I-1034

    Google Scholar 

  • Stuart-Alexander D (1978) Geologic map of the central far side of the moon. United State Geological Survey, Miscellaneous Investigations Series, Map I-1047

    Google Scholar 

  • Titley SR (1967) Geologic map of the Mare Humorum Region of the moon. Unites States ­Geological Survey, Miscellaneous Investigations Series, Map I-495

    Google Scholar 

  • Wilhelms DE, El-Baz F (1977) Geologic map of the east side of the moon. United States Geological Survey, Miscellaneous Investigations Series, Map I-948

    Google Scholar 

  • Wilhelms DE, McCauley JF (1971) Geologic map of the near side of the moon. United States Geological Survey, Miscellaneous Investigations Series, Map I-703

    Google Scholar 

Lunar Charts Cited

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Malcuit .

Appendices

Appendix

The “Cool Early Earth” Vignette (Sect. 5.6.)

This appendix consists mainly of plots of orbits and tidal amplitudes for an earth-like planet during an orbit circularization sequence associated with the recycling mechanism for a primitive terrestrial crust.

NOTE: This is a full set of orbital and rock tidal amplitude diagrams for the orbit circularization sequence for the Condensed Orbital Evolution.

Fig. 5.81
figure 81

Normal calculated two-body evolution timescale vs. Condensed three-body timescale. a Normal calculated two-body timescale, 200 Ma intervals. b Condensed three-body timescale, 200 Ma intervals

Fig. 5.82
figure 82

Plots of orbits for condensed timescale. a Time of capture to 31.6 Ma. b 31.6–1030 Ma. (~ 10 % eccentricity)

Fig. 5.83
figure 83

a. 8 years of orbits soon after capture. b 8 years of rock tidal amplitudes on Earth soon after capture

Fig. 5.84
figure 84

8 years of orbits ~ 126 years after capture. b 8 years of rock tidal amplitudes on Earth ~ 126 years after capture

Fig. 5.85
figure 85

a 8 years of orbits ~ 281 years after capture. b 8 years of rock tidal amplitudes on Earth ~ 281 years after capture

Fig. 5.86
figure 86

a 8 years of orbits ~ 481 years after capture. b 8 years of rock tidal amplitudes on Earth ~ 481 years after capture

Fig. 5.87
figure 87

a 8 years of orbits ~ 748 years after capture. b 8 years of rock tidal amplitudes on Earth ~ 748 years after capture

Fig. 5.88
figure 88

a 8 years of orbits ~ 1085 years after capture. b 8 years of rock tidal amplitudes on Earth ~ 1085 years after capture

Fig. 5.89
figure 89

a 8 years of orbits ~ 1515 years after capture. b 8 years of rock tidal amplitudes on Earth ~ 1515 years after capture

Fig. 5.90
figure 90

a 8 years of orbits ~ 2033 years after capture. b 8 years of rock tidal amplitudes ~ 2033 years after capture

Fig. 5.91
figure 91

a 8 years of orbits ~ 2733 years after capture. b 8 years of rock tidal amplitudes on Earth ~ 2733 years after capture

Fig. 5.92
figure 92

a 8 years of orbits ~ 3467 years after capture. b 8 years of rock tidal amplitudes on Earth ~ 3467 years after capture

Fig. 5.93
figure 93

a 8 years of orbits ~4347 years after capture. b 8 years of rock tidal amplitudes of Earth ~ 4347 years after capture

Fig. 5.94
figure 94

a 8 years of orbits ~ 18.59 Ka after capture. b 8 years of rock tidal amplitudes on Earth ~ 18.59 Ka after capture

Fig. 5.95
figure 95

8 years of orbits ~ 61.04 Ka after capture. b 8 years of rock tidal amplitudes on Earth ~ 61.04 Ka after capture

Fig. 5.96
figure 96

a. 8 years of orbits ~ 160 Ka after capture. b 8 years of rock tidal amplitudes on Earth ~ 160 Ka after capture

Fig. 5.97
figure 97

a 8 years of orbits ~ 347 Ka after capture. b 8 years of rock tidal amplitudes on Earth ~347 Ka after capture

Fig. 5.98
figure 98

a 8 years of orbits ~ 3.857 Ma after capture. b 8 years of rock tidal amplitudes ~ 3.857 Ma after capture

Fig. 5.99
figure 99

a 4 years of orbits ~ 31.6 Ma after capture. b 4 years of rock tidal amplitudes on Earth ~ 31.6 Ma after capture

Fig. 5.100
figure 100

a 2 years of orbits ~ 149 Ma after capture. b 2 years of rock tidal amplitudes on Earth ~ 149 Ma after capture

Fig. 5.101
figure 101

a 2 years of orbits ~ 304 Ma after capture. b 2 years of rock tidal amplitudes on Earth ~ 304 Ma after capture

Fig. 5.102
figure 102

a 2 years of orbits ~ 485 Ma after capture. b 2 years of rock tidal amplitudes on Earth ~ 485 Ma after capture

Fig. 5.103
figure 103

a 2 years of orbits ~ 671 Ma after capture. b 2 years of rock tidal amplitudes on Earth ~671 years after capture

Fig. 5.104
figure 104

a 2 years of orbits ~ 863 Ma after capture. b 2 years of rock tidal amplitudes ~ 863 Ma after capture

Fig. 5.105
figure 105

a 2 years of orbits ~ 1030 Ma after capture. b 2 years of rock tidal amplitudes on Earth ~ 1030 Ma after capture

Fig. 5.106
figure 106

a Plot of Earth tidal amplitudes (Capture to 25 Ka after capture). b Plot of energy dissipation in Earth. (Capture to 25 Ka after capture)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Malcuit, R. (2015). Some Critical Interpretations and Misinterpretations of Lunar Features. In: The Twin Sister Planets Venus and Earth. Springer, Cham. https://doi.org/10.1007/978-3-319-11388-3_5

Download citation

Publish with us

Policies and ethics