Skip to main content

A Prograde Gravitational Capture Model for the Origin and Evolution of the Earth-Moon System

  • Chapter
  • First Online:
  • 947 Accesses

Abstract

The origin of the Moon is one of the outstanding unsolved problems in the natural sciences. Cursory examination of college-level textbooks in the Earth and Planetary Sciences leaves one with the impression that the Moon is simply a “night lantern” and that the moon effects the Earth in only minor ways, such as controlling the tidal waters on the planet.

Of the other alternatives, it is perhaps just possible that the moon was originally an independent planet, though it is much less massive than any existing planet.

Jeffreys (1929), p. 37

….capture of the entire moon is an inherently improbable event because of the narrow range of orbital elements for which the relatively slow-working tidal friction could dissipate sufficient energy to prevent escape.

Kaula (1971), p. 224

The basic geochemical model of the structure of the Moon proposed by Anderson, in which the Moon is formed by differentiation of the calcium, aluminum, titanium-rich inclusions in the Allende meteorite, is accepted, and the conditions for formation of this Moon within the solar nebula models of Cameron and Pine are discussed. The basic material condenses while iron remains in the gaseous phase, which places the formation of the Moon slightly inside the orbit of Mercury.

From Cameron 1973, p. 377

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfven H (1969) Atom, man, and the universe: the long chain of complications. W. H. Freeman and Company, San Francisco, 110 p

    Google Scholar 

  • Alfven H, Alfven K (1972) Living on the third planet. W. H. Freeman and Company, San Francisco, 187 p

    Google Scholar 

  • Bland PA, Spurny P et al (2009) An anomalous basaltic meteorite from the innermost main belt. Science 325:1525–1527

    Article  Google Scholar 

  • Bostrom RC (2000) Tectonic consequences of the Earth’s rotation. Oxford University Press, London, 266 p

    Google Scholar 

  • Cameron AGW (1972) Orbital eccentricity of Mercury and the origin of the moon. Nature 240:299–300

    Article  Google Scholar 

  • Cameron AGW (1973) Properties of the solar nebula and the origin of the moon. Moon 7:377–383

    Article  Google Scholar 

  • Campbell AJ, Humayun M (2005) Compositions of group IVB iron meteorites and their parent melt. Geochim Cosmochim Acta 69:4733–4744

    Article  Google Scholar 

  • Cisowski SM, Collinson DW, Runcorn SK, Stephenson A, Fuller M (1983) A review of lunar paleointensity data and implications for the origin of lunar magnetism. J Geophys Res 88:A691–A704

    Article  Google Scholar 

  • Connelly JN, Bizzarro M, Krot AN, Nordlund A, Wielandt D, Ivanova MA (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338:651–655

    Article  Google Scholar 

  • Day JMD, Pearson DG, Taylor LA (2007) Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system. Science 315:217–219

    Article  Google Scholar 

  • Duffard R, Roig F (2009) Two new V-type asteroids in the outer Main Belt? Planet Space Sci 57:229–234

    Article  Google Scholar 

  • Dyal P, Parkin CW (1973) The magnetism of the Moon. Sci Am 225(2):63–73

    Article  Google Scholar 

  • Evans WN, Tabachnik S (1999) Possible long-lived asteroid belts in the inner Solar System. Nature 399:41–43

    Article  Google Scholar 

  • Evans WN, Tabachnik S (2002) Structure of possible long-lived asteroid belts: Monthly notices. R Astro Soc 333:L1–L5

    Article  Google Scholar 

  • Fuller M (1974) Lunar magnetism. Rev Geophys Space Phys 12:23–79

    Article  Google Scholar 

  • Goldreich P, Soter S (1966) Q in the solar system. Icarus 5:375–389

    Article  Google Scholar 

  • Goldstein JI, Scott ERD, Chabot N L (2009) Iron meteorites. Crystallization, thermal history, parent bodies, and origin. Chem Erde 69:293–325

    Article  Google Scholar 

  • Greenwood RC, Franchi IA, Jambon A, Buchanan PC (2005) Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435:916–918

    Article  Google Scholar 

  • Hansen KS (1982) Secular effects of oceanic tidal dissipation on the moon’s orbit and the Earth’s rotation. Rev Geophys Space Phys 30:457–480

    Article  Google Scholar 

  • Jeffreys H (1929) The Earth, its origin, history and physical constitution, 2nd edn. Cambridge University Press, Cambridge, 346 p

    Google Scholar 

  • Kaula WM (1971) Dynamics aspects of lunar origin. Rev Geophys 9:117–238

    Article  Google Scholar 

  • Kaula WM, Harris AW (1973) Dynamically plausible hypotheses of lunar origin. Nature 245:367–369

    Article  Google Scholar 

  • Laskar J (1994) Large-scale chaos in the solar system. Astro Astrophys 287:L9–L12

    Google Scholar 

  • Laskar J (1995) Large scale chaos and marginal stability in the Solar System: XIth International Congress of Mathematical Physics. International Press, Boston, 120 p

    Google Scholar 

  • Levy EH (1972) Magnetic dynamo in the moon: A comparison with the Earth. Science 178:52–53

    Article  Google Scholar 

  • Levy EH (1974) A magnetic dynamo in the Moon? Moon 9:49–56

    Article  Google Scholar 

  • Love AEH (1911) Some problems in geodynamics. Cambridge University Press, Cambridge, 180 p (reprinted by Dover, 1967)

    Google Scholar 

  • Love AEH (1927) A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, Cambridge, 643 p

    Google Scholar 

  • MacDonald GJF (1964) Tidal friction. Rev Geophys 2:467–541

    Article  Google Scholar 

  • MacPherson GJ, Simon SB, Davis AM, Grossman L, Krot AN (2005) Calcium-aluminum-rich inclusions. Major unanswered questions. In: Krot AN, Scott ERD, Reipurth B (eds) Chrondrites and the protoplanetary disk. Astronomical Society of the Pacific: San Franciso, pp 225–250

    Google Scholar 

  • Malcuit RJ, Winters RR (1996) Geometry of stable capture zones for planet Earth and implications for estimating the probability of stable gravitational capture of planetoids from heliocentric orbit. Abstracts Volume, XXVII Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, pp 799–800

    Google Scholar 

  • Malcuit RJ, Winters RR, Mickelson ME (1977) Is the Moon a captured body? Abstracts Volume, Eighth Lunar Science Conference, pp 608–610

    Google Scholar 

  • Malcuit RJ, Mehringer DM, Winters RR (1988) Computer simulation of “intact” gravitational capture of a lunar-like body by an Earth-like body: Abstracts Volume, Lunar and Planetary Science XIX. Lunar and Planetary Institute, Houston, pp 718–719

    Google Scholar 

  • Malcuit RJ, Mehringer DM, Winters RR (1989) Numerical simulation of gravitational capture of a lunar-like body by Earth. In: Proceedings of the 19th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, pp 581–591

    Google Scholar 

  • Malcuit RJ, Mehringer DM, Winters RR (1992) A gravitational capture origin for the Earth-Moon system. Implications for the early history of the Earth and Moon. In: Glover JE, Ho SE (eds) Proceedings Volume, 3rd International Archaean Symposium, vol 22. The University of Western Australia, Crawley, pp 223–235

    Google Scholar 

  • Melchior PJ (1978) The tides of planet Earth. Pergamon Press, New york, 609 p

    Google Scholar 

  • Mittlefehldt DW, McCoy T J, Goodrich C A, Kracher A (1998) Non-chondritic meteorites from asteroidal bodies. In: Papike JJ (ed) Planetary materials: reviews of mineralogy, vol 36. pp 4–1 to 4–195

    Google Scholar 

  • Munk WH, MacDonald GJF (1960) The rotation of the Earth. Cambridge University Press, London, 323 p

    Google Scholar 

  • Peale SJ, Cassen P (1978) Contributions of tidal dissipation to lunar thermal history. Icarus 36:245–269

    Article  Google Scholar 

  • Prichard ME, Stevenson DJ (2000) Thermal aspects of a lunar origin by giant impact. In: Canup RM, Righter K (eds) Origin of the Earth and moon. University of Arizona Press, Tucson, pp 179–196

    Google Scholar 

  • Ribeiro AO, Roig F, Canada-Assandri M, Carvano JMF, Jasmin FL, Alvarez-Candal A, Gil-Hutton R (2014) The first confirmation of V-type asteroids among the mars-crosser population. Planet Sp Sci 92:57–64

    Google Scholar 

  • Roig F, Nesvorny D, Gil-Hutton R, Lazzaro D (2008) V-type asteroids in the middle main belt. Icarus 194:125–136

    Article  Google Scholar 

  • Ross M, Schubert G (1986) Tidal dissipation in a viscoelastic planet. Proceedings of the 16th Lunar and Planetary Science Conference. J Geophys Res 91:D447–D452

    Article  Google Scholar 

  • Roy AE (1965) The foundations of astrodynamics. The Macmillan Company, New York, 385 p

    Google Scholar 

  • Russell CT (1980) Planetary magnetism. Rev Geophys Space Phys 18:77–106

    Article  Google Scholar 

  • Ruzicka A, Snyder GA, Taylor LA (1999) Giant impact and fission hypotheses for the origin of the Moon. A critical review of some geochemical evidence. In: Snyder GA, Neal CR, Ernst WG (eds) Planetary petrology and geochemistry. Geological Society of America, International Book Series 2:121–134

    Google Scholar 

  • Ruzicka A, Snyder GA, Taylor LA (2001) Comparative geochemistry of basalts from the Moon, Earth, HED asteroid, and Mars. Implications for the origin of the Moon. Geochim Cosmochem Acta 65:979–997

    Article  Google Scholar 

  • Salmeron R, Ireland TR (2012) Formation of chondrules in magnetic winds blowing through the proto-asteroid belt. Earth Planet Sci Lett 327–328:61–67

    Article  Google Scholar 

  • Scott ERD, Greenwood RC, Franchi IA, Sanders IS (2009) Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochim Cosmochim Acta 73:5835–5853

    Article  Google Scholar 

  • Sharp LR, Coleman PJ Jr, Lichtenstein BR, Russell CT, Schubert G (1973) Orbital mapping of the lunar magnetic field. Moon 7:322–341

    Article  Google Scholar 

  • Shu FH, Shang H, Glassgold AE, Lee T (1997) X-rays and fluctuating X-Winds from protostars. Science 277:1475–1479

    Article  Google Scholar 

  • Shu FH, Shang H, Gounelle M, Glassgold AE, Lee T (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys J 548:1029–1050

    Article  Google Scholar 

  • Singer SF (1968) The origin of the moon and geophysical consequences. Geophys J R Astron Soc 15:205–226

    Article  Google Scholar 

  • Singer SF (1970) The origin of the moon and its consequences. Trans Am Geophys Union 51:637–641

    Article  Google Scholar 

  • Smoluchowski R (1973a) Lunar tides and magnetism. Nature 242:516–517

    Article  Google Scholar 

  • Smoluchowski R (1973b) Magnetism of the moon. The Moon 7:127–131

    Article  Google Scholar 

  • Sonett CP, Colburn DS, Schwartz K (1975) Formation of the lunar crust: an electrical source of heating. Icarus 24:231–255

    Article  Google Scholar 

  • Stacey FD (1977) Physics of the Earth, 2nd edn. Wiley, London, 414 p

    Google Scholar 

  • Taylor SR (2001) Solar System evolution: a new perspective, 2nd edn. Cambridge University Press, Cambridge, 460 p

    Book  Google Scholar 

  • Wasson JT (2013) Vesta and extensively melted asteroids. Why HED meteorites are probably not from Vesta. Earth Planet Sci Lett 381:138–146

    Article  Google Scholar 

  • Webb DJ (1982) Tides and the evolution of the Earth-Moon system. Geophys J R Astron Soc 70:261–271

    Article  Google Scholar 

  • Winters RR, Malcuit RJ (1977) The lunar capture hypothesis revisited. Moon 17:353–358

    Article  Google Scholar 

  • Wood JA (2004) Formation of chondritic refractory inclusions. The astrophysical setting. Geochim Cosmochim Acta 68:4007–4021

    Article  Google Scholar 

  • Wood JA, Dickey JS Jr, Marvin UB, Powell BN (1970) Lunar anorthosites and a geophysical model of the moon. Proceedings of the Apollo 11 Lunar Science Conference, Lunar Science Institite, Houston, vol 1, pp 965–988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Malcuit .

Appendix

Appendix

This appendix consists mainly of plots of orbits and tidal amplitudes for Luna during an orbit circularization sequence and for the generation of the second phase of a lunar magnetic field. Another favorable feature of this capture model is that it is compatible with traceback calculations of Hansen (1982) and Webb (1982). They both suggested that the lunar orbit could be as large as 30 to 40 earth radii early in the history of the Solar System. Hansen (1982), in particular, suggested capture of the Moon into a geocentric orbit with the angular momentum equivalent of about 30 earth radii.

Fig. 4.35
figure 35

Normal 2-B timescale vs. condensed 3-B timescale. a Normal 2-B calculated timescale, 200 Ma intervals. b Condensed 3-B timescale, 200 Ma intervals

Fig. 4.36
figure 36

Plots of orbits for condensed timescale. a Time of capture to 31.6 Ma. b 31.6–1030 Ma (~ 10 % eccentricity)

Fig. 4.37
figure 37

a 8 years of orbits soon after capture. b 8 years of lunar tidal amplitudes soon after capture

Fig. 4.38
figure 38

a 8 years of orbits ~ 126 years after capture. b 8 years of lunar tidal amplitudes ~ 126 years after capture

Fig. 4.39
figure 39

a 8 years of orbits ~ 281 years after capture. b 8 years of lunar tidal amplitudes ~ 281 years after capture

Fig. 4.40
figure 40

a 8 years of orbits ~ 481 years after capture. b 8 years of lunar tidal amplitudes ~ 481 years after capture

Fig. 4.41
figure 41

a 8 years of orbits ~ 748 years after capture. b 8 years of lunar tidal amplitudes ~ 748 years after capture

Fig. 4.42
figure 42

a 8 years of orbits ~ 1085 years after capture. b 8 years of lunar tidal amplitudes ~ 1085 years after capture

Fig. 4.43
figure 43

a 8 years of orbits ~ 1515 years after capture. b 8 years of lunar tidal amplitudes ~ 1515 years after capture

Fig. 4.44
figure 44

a 8 years of orbits ~ 2033 years after capture. b 8 years of lunar tidal amplitudes ~ 2033 years after capture

Fig. 4.45
figure 45

a 8 years of orbits ~ 2733 years after capture. b 8 years of lunar tidal amplitudes ~ 2733 years after capture

Fig. 4.46
figure 46

a 8 years of orbits ~ 3467 years after capture. b 8 years of lunar tidal amplitude ~ 3467 years after capture

Fig. 4.47
figure 47

a 8 years of orbits ~ 4347 years after capture. b 8 years of lunar tidal amplitudes ~ 4347 years after capture

Fig. 4.48
figure 48

a 8 years of orbits ~ 18.59 Ka after capture. b 8 years of lunar tidal amplitudes ~ 18.59 Ka after capture

Fig. 4.49
figure 49

a 8 years of orbits ~ 61.04 Ka after capture. b 8 years of lunar tidal amplitudes ~ 61.04 Ka after capture

Fig. 4.50
figure 50

a 8 years of orbits ~ 160 Ka after capture. b 8 years of lunar tidal amplitudes ~ 160 Ka after capture

Fig. 4.51
figure 51

a 8 years of orbits ~ 347 Ka after capture. b 8 years of lunar tidal amplitudes ~ 347 Ka after capture

Fig. 4.52
figure 52

a 8 years of orbits ~ 3.857 Ma after capture. b 8 years of lunar tidal amplitudes ~ 3.857 Ma after capture

Fig. 4.53
figure 53

a 4 years of orbits ~ 31.6 Ma after capture. b 4 years of lunar tidal amplitudes ~ 31.6Ma ago

Fig. 4.54
figure 54

a 2 years of orbits ~ 149 Ma after capture. b 2 years of lunar tidal amplitudes ~ 149 Ma after capture

Fig. 4.55
figure 55

a 2 years of orbits ~ 304 Ma after capture. b 2 years of lunar tidal amplitudes ~ 304 Ma after capture

Fig. 4.56
figure 56

a 2 years of orbits ~ 485 Ma after capture. b 2 years of lunar tidal amplitudes ~ 485 Ma after capture

Fig. 4.57
figure 57

a 2 years of orbits ~ 671 Ma after capture. b 2 years of lunar tidal amplitudes ~ 671 years after capture

Fig. 4.58
figure 58

a 2 years of orbits ~ 863 Ma after capture. b 2 years of lunar tidal amplitudes ~ 863 Ma after capture

Fig. 4.59
figure 59

a 2 years of orbits ~ 1030 Ma after capture. b 2 years of lunar tidal amplitudes ~ 1030 Ma after capture

Fig. 4.60
figure 60

a Plot of lunar tidal amplitudes (C to 25 Ka). b Plot of energy dissipation in Luna (C to 25 Ka)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Malcuit, R. (2015). A Prograde Gravitational Capture Model for the Origin and Evolution of the Earth-Moon System. In: The Twin Sister Planets Venus and Earth. Springer, Cham. https://doi.org/10.1007/978-3-319-11388-3_4

Download citation

Publish with us

Policies and ethics