Robustness Analysis in Multicriteria Disaggregation – Aggregation Approaches for Group Decision Making

  • Denis Yannacopoulos
  • Athanasios Spyridakos
  • Nikos TsotsolasEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 184)


Multicriteria Disaggregation - Aggregation (D-A) approaches results to the estimation of Decision Makers’ preference models (usually of additive value) through interactive procedures, where the global preferences of DMs are analysed. The low robustness of preference models, presented in many cases, can be the result of the ill-structured problem formulation or can reflect the real thoughts of DMs. The case of collaborative decision making presents more complicated situations. This research work describes the use of visual techniques based on 3d graphs and a set of indices, which can be used for picturing and comprehension of the low robustness in collaborative decision making problems. Also, the frame of feedbacks which can be utilised for the reducing and the exploitation of the low robustness is described and illustrated through a case study.


Multicriteria decision aid Collaborative decision making Robustness analysis 



This research has been co-financed by the European Union (European Social Funds (ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Funds.


  1. 1.
    Beuthe, M., Scannella, G.: Comparative analysis of UTA multicriteria methods. Eur. J. Oper. Res. 130, 246–262 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Black, D.: The Theory of Committees and Elections. Cambridge University Press, Cambridge (1958)zbMATHGoogle Scholar
  3. 3.
    Borda, J.C.: Memoire sur les elections au scrutin. Histoire de L’Academie Royale des Sciences (1781)Google Scholar
  4. 4.
    Cook, W.D., Seiford, L.M.: Priorities ranking and consensus formation. Manage. Sci. 20(16), 59–73 (1978)zbMATHGoogle Scholar
  5. 5.
    Greco, S., Kedzinski, M., Mousseau, V., Slowinski, R.: Robust ordinal regression for multiple criteria group decision, UTA^GMS-GROUP and UTA^DISGMS-GROUP. Decis. Support Syst. 52(3), 549–561 (2012)CrossRefGoogle Scholar
  6. 6.
    Hwang, C.-L., Lin, M.-J.: Group Decision Making under Multiple Criteria. Lectures Notes in Economics and Mathematical Systems. Springer, Berlin (1988)Google Scholar
  7. 7.
    Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions for multicriteria decision making. Eur. J. Oper. Res. 10(2), 151–164 (1982)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kadzinski, M., Greco, S., Slovinski, R.: Selection of a representative function in robust multiple criteria ranking and choice. Eur. J. Oper. Res. 217, 541–553 (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kersten, K., Mounir, A., Van de Woestyne, I.: Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function. Eur. J. Oper. Res. 210, 81–94 (2011)CrossRefGoogle Scholar
  10. 10.
    Manas, M., Nedoma, J.: Finding all vertexes of a convex polyhedron. Numer. Math. 12, 226–229 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Siskos, Y., Yannacopoulos, D.: UTASTAR, an ordinal regression method for building additive value functions. Investigacao Operacional 5(1), 39–53 (1985)Google Scholar
  12. 12.
    Siskos, Y., Spyridakos, A., Yannacopoulos, D.: Using artificial intelligent techniques into preference disaggregation analysis: The MIIDAS system. Eur. J. Oper. Res. 113, 281–299 (1998)CrossRefGoogle Scholar
  13. 13.
    Siskos, Y., Spyridakos, A., Yannacopoulos, D.: MINORA: a multicriteria decision aiding system for discrete alternatives. J. Inf. Sci. Technol. In: Siskos, Y., Zopounidis, C. (eds.) Special Issue on Multicriteria Decision Support Systems, 2(2), 136–149 (1993)Google Scholar
  14. 14.
    Spyridakos, A., Siskos, Y., Yannacopoulos, D., Skouris, A.: Multicriteria job evaluation for large organizations. Eur. J. Oper. Res. 130, 375–387 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Spyridakos, A.: Aggregation of individual preference models in collaborative decision making through disaggregation-aggregation approach with the RACES system. In: Respicio, A., Burstein, F. (eds.) Fusing Decision Support Systems into the Fabric of the Contex, pp. 241–252. IOS Press, Amsterdam (2012)Google Scholar
  16. 16.
    Spyridakos, A., Yannacopoulos, D.: Incorporating collective functions to multicriteria disaggregation – aggregation approaches for small group decision making. Ann. Oper. Res. 216 (2014). doi: 10.1007/s10479-014-1609-3

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Denis Yannacopoulos
    • 1
  • Athanasios Spyridakos
    • 1
  • Nikos Tsotsolas
    • 1
    Email author
  1. 1.Department of Business AdministrationTechnological Educational Institute of PiraeusAthensGreece

Personalised recommendations