Inorganic Nanoparticles in Targeted Drug Delivery and Imaging

  • Hélder A. Santos
  • Luis M. Bimbo
  • Leena Peltonen
  • Jouni HirvonenEmail author
Part of the Advances in Delivery Science and Technology book series (ADST)


One of the major aims in modern nanomedicine is to develop delivery platforms for targeted delivery of therapeutics or imaging agents for improved therapeutic efficacy, reduced side effects, and increased diagnostic sensitivity. In this context, nanomaterials are advancing in several directions with significant progress being achieved with respect to their synthesis, functionalization, and biomedical applications. Currently, active and passive targeting and controlled drug release constitute some of the crucial functions identified to achieve a medical purpose. The limitation in targeting is currently associated, for example, with slow clearance, and systemic and local toxicity. Inorganic nanomaterials have been recognized for controllable properties on many levels for biomedical applications, such as mesoporous silica and silicon materials, gold, silver, quantum dots, and magnetic nanoparticles. These materials have great potential for cell labelling, biosensing, in vivo and magnetic imaging, targeting, and diagnostics. In this chapter, we start by introducing briefly some of the important aspects of inorganic nanoparticles in nanomedicine and describe their potential applications as nanocarriers or agents for biomedical applications, particularly for imaging/diagnostics and targeting. We then address some of the important aspects of the inorganic nanomaterials, including mesoporous silica and silicon materials, gold, silver, quantum dots, and magnetic nanoparticles in terms of their fabrication and synthesis, targeting, and imaging properties relevant for biomedical applications. Finally, we conclude the chapter with a brief overview of our visions of the future of the inorganic nanomaterials in drug delivery applications and their potentials for further translation into clinic.


Active and passive targeting Nanoparticles Mesoporous silica Mesoporous silicon Gold Silver Quantum dots Magnetic Targeting Imaging Inorganic nanomaterials 



Dr. Hélder A. Santos acknowledges the Academy of Finland (projects numbers 252215 and 256394), the University of Helsinki and the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement number 310892 for financial support. Dr. Luis M. Bimbo acknowledges the Finnish Cultural Foundation for financial support.


  1. 1.
    Son SJ, Bai X, Lee SB (2007) Inorganic hollow nanoparticles and nanotubes in nanomedicine part 1. Drug/gene delivery applications. Drug Discov Today 12:650–656PubMedGoogle Scholar
  2. 2.
    Son SJ, Bai X, Lee SB (2007) Inorganic hollow nanoparticles and nanotubes in nanomedicine part 2: imaging, diagnostic, and therapeutic applications. Drug Discov Today 12:657–663PubMedGoogle Scholar
  3. 3.
    Sanvicens N, Marco MP (2008) Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol 26:425–433PubMedGoogle Scholar
  4. 4.
    Sekhon BS, Kamboj SR (2010) Inorganic nanomedicine–part 2. Nanomedicine 6:612–618PubMedGoogle Scholar
  5. 5.
    Sekhon BS, Kamboj SR (2010) Inorganic nanomedicine–part 1. Nanomedicine 6:516–522PubMedGoogle Scholar
  6. 6.
    Alkilany AM, Lohse SE, Murphy CJ (2012) The gold standard: gold nanoparticle libraries to understand the nano-bio interface. Acc Chem Res 46:650–661PubMedGoogle Scholar
  7. 7.
    Salonen J, Kaukonen AM, Hirvonen J, Lehto V-P (2008) Mesoporous silicon in drug delivery applications. J Pharm Sci 97:632–653PubMedGoogle Scholar
  8. 8.
    Santos HA, Bimbo LM, Lehto V-P, Airaksinen AJ, Salonen J, Hirvonen J (2011) Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr Drug Discov Technol 8:228–249PubMedGoogle Scholar
  9. 9.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171PubMedGoogle Scholar
  10. 10.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20PubMedGoogle Scholar
  11. 11.
    Salonen J, Laitinen L, Kaukonen AM, Tuura J, Bjorkqvist M, Heikkila T, Vaha-Heikkila K, Hirvonen J, Lehto V-P (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108:362–374PubMedGoogle Scholar
  12. 12.
    Shegokar R, Muller RH (2010) Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 399:129–139PubMedGoogle Scholar
  13. 13.
    Muller RH, Shegokar R, Keck CM (2011) 20 years of lipid nanoparticles (sln and nlc): present state of development and industrial applications. Curr Drug Discov Technol 8:207–227PubMedGoogle Scholar
  14. 14.
    Muller RH, Keck CM (2012) Twenty years of drug nanocrystals: where are we, and where do we go? Eur J Pharm Biopharm 80:1–3PubMedGoogle Scholar
  15. 15.
    Devadasu VR, Bhardwaj V, Kumar MN (2013) Can controversial nanotechnology promise drug delivery? Chem Rev 113:1686–1735PubMedGoogle Scholar
  16. 16.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392PubMedGoogle Scholar
  17. 17.
    Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58PubMedGoogle Scholar
  18. 18.
    Sapra P, Allen TM (2002) Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 62:7190–7194PubMedGoogle Scholar
  19. 19.
    Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040Google Scholar
  20. 20.
    Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212PubMedCentralPubMedGoogle Scholar
  21. 21.
    Rosenholm JM, Sahlgren C, Linden M (2011) Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr Drug Targets 12:1166–1186PubMedGoogle Scholar
  22. 22.
    Yang X, Wang Y, Huang X, Ma Y, Huang Y, Yang R, Duan H, Chen Y (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21:3448–3454Google Scholar
  23. 23.
    Paik T, Gordon TR, Prantner AM, Yun H, Murray CB (2013) Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS Nano 7:2850–2859PubMedGoogle Scholar
  24. 24.
    Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870PubMedGoogle Scholar
  25. 25.
    Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for mri contrast agents. Adv Mater 21:2133–2148Google Scholar
  26. 26.
    Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225PubMedGoogle Scholar
  27. 27.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730PubMedGoogle Scholar
  28. 28.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554PubMedCentralPubMedGoogle Scholar
  29. 29.
    Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135:1438–1444PubMedGoogle Scholar
  30. 30.
    Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048Google Scholar
  31. 31.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712Google Scholar
  32. 32.
    Lin Y-S, Tsai C-P, Huang H-Y, Kuo C-T, Hung Y, Huang D-M, Chen Y-C, Mou C-Y (2005) Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17:4570–4573Google Scholar
  33. 33.
    Vivero-Escoto JL, Slowing I, Trewyn BG, Lin VS (2010) Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6:1952–1967PubMedGoogle Scholar
  34. 34.
    Zhao Y, Vivero-Escoto JL, Slowing I, Trewyn BG, Lin VS (2010) Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery. Expert Opin Drug Deliv 7:1013–1029PubMedGoogle Scholar
  35. 35.
    Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902PubMedGoogle Scholar
  36. 36.
    Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605PubMedGoogle Scholar
  37. 37.
    Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534PubMedGoogle Scholar
  38. 38.
    Vivero-Escoto JL, Huxford-Phillips RC, Lin W (2012) Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 41:2673–2685PubMedCentralPubMedGoogle Scholar
  39. 39.
    Yanes RE, Tamanoi F (2012) Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Ther Deliv 3:389–404PubMedCentralPubMedGoogle Scholar
  40. 40.
    Wang K, He X, Yang X, Shi H (2013) Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Res. Publication ahead of print, Acc ChemGoogle Scholar
  41. 41.
    Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J (2001) A new property of mcm-41: drug delivery system. Chem Mater 13:308–311Google Scholar
  42. 42.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 1272–7863(114):10834–10843Google Scholar
  43. 43.
    Rosenholm JM, Sahlgren C, Linden M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges. Nanoscale 2:1870–1883PubMedGoogle Scholar
  44. 44.
    Wu S-H, Hung Y, Mou C-Y (2011) Mesoporous silica nanoparticles as nanocarriers. Chem Comm 47:9972–9985PubMedGoogle Scholar
  45. 45.
    Kapoor MP, Fujii W, Yanagi M, Kasama Y, Kimura T, Nanbu H, Juneja LR (2008) Environmental friendly rapid mass production synthetic process of highly ordered nanometer sized mesoporous silica using a combination of acid–base and evaporation approach. Micropor Mesopor Mat 116:370–377Google Scholar
  46. 46.
    He Q, Cui X, Cui F, Guo L, Shi J (2009) Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition. Micropor Mesopor Mat 117:609–616Google Scholar
  47. 47.
    Feng X, Fryxell GE, Wang L-Q, Kim AY, Liu J, Kemner KM (1997) Functionalized monolayers on ordered mesoporous supports. Science 276:923–926Google Scholar
  48. 48.
    Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, Hanna TN, Liu J, Phillips B, Carter MB, Carroll NJ, Jiang X, Dunphy DR, Willman CL, Petsev DN, Evans DG, Parikh AN, Chackerian B, Wharton W, Peabody DS, Brinker CJ (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10:389–397PubMedCentralPubMedGoogle Scholar
  49. 49.
    Korotcenkov G, Cho BK (2010) Silicon porosification: state of the art. Crit Rev Solid State Mater Sci 35:153–260Google Scholar
  50. 50.
    Salonen J, Lehto V-P, Björkqvist M, Laine E, Niinistö L (2000) Studies of thermally-carbonized porous silicon surfaces. Phys Status Solidi A 182:123–126Google Scholar
  51. 51.
    Park J-H, Gu L, Maltzahn GV, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336PubMedCentralPubMedGoogle Scholar
  52. 52.
    Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Makila E, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J, Salonen J (2010) Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4:3023–3032PubMedGoogle Scholar
  53. 53.
    Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M (2011) Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta 1810:317–329PubMedCentralPubMedGoogle Scholar
  54. 54.
    Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, Decuzzi P, Liu XW (2012) Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater 22:4225–4235PubMedCentralPubMedGoogle Scholar
  55. 55.
    Salonen J, Björkqvist M, Laine E, Niinistö L (2004) Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl Surf Sci 225:389–394Google Scholar
  56. 56.
    Salonen J, Lehto V-P (2008) Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem Eng J 137:162–172Google Scholar
  57. 57.
    Sarparanta M, Makila E, Heikkila T, Salonen J, Kukk E, Lehto V-P, Santos HA, Hirvonen J, Airaksinen AJ (2011) 18f-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8:1799–1806PubMedGoogle Scholar
  58. 58.
    Santos HA, Riikonen J, Salonen J, Makila E, Heikkila T, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J (2010) In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size. Eur J Pharm Biopharm 6:2721–2731Google Scholar
  59. 59.
    Bimbo LM, Makila E, Raula J, Laaksonen T, Laaksonen P, Strommer K, Kauppinen EI, Salonen J, Linder MB, Hirvonen J, Santos HA (2011) Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials 32:9089–9099PubMedGoogle Scholar
  60. 60.
    Kilpelainen M, Monkare J, Vlasova MA, Riikonen J, Lehto V-P, Salonen J, Jarvinen K, Herzig KH (2011) Nanostructured porous silicon microparticles enable sustained peptide (melanotan ii) delivery. Eur J Pharm Biopharm 77:20–25PubMedGoogle Scholar
  61. 61.
    Sarparanta M, Bimbo LM, Rytkonen J, Makila E, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ (2012) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharm 9:654–663PubMedGoogle Scholar
  62. 62.
    Sarparanta MP, Bimbo LM, Makila EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ (2012) The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33:3353–3362PubMedGoogle Scholar
  63. 63.
    Liu D, Mäkilä E, Zhang H, Herranz B, Kaasalainen M, Kinnari P, Salonen J, Hirvonen J, Santos HA (2013) Nanostructured porous silicon-solid lipid nanocomposite: towards enhanced cytocompatibility and stability, reduced cellular association, and prolonged drug release. Adv Funct Mater 23:1893–1902Google Scholar
  64. 64.
    Boukherroub R, Wojtyk JTC, Wayner DDM, Lockwood DJ (2002) Thermal hydrosilylation of undecylenic acid with porous silicon. J Electrochem Soc 149:H59–H63Google Scholar
  65. 65.
    Sciacca B, Secret E, Pace S, Gonzalez P, Geobaldo F, Quignard F, Cunin F (2011) Chitosan-functionalized porous silicon optical transducer for the detection of carboxylic acid-containing drugs in water. J Mater Chem 21:2294–2302Google Scholar
  66. 66.
    Kovalainen M, Monkare J, Makila E, Salonen J, Lehto V-P, Herzig KH, Jarvinen K (2012) Mesoporous silicon (psi) for sustained peptide delivery: effect of psi microparticle surface chemistry on peptide yy3-36 release. Pharm Res 29:837–846PubMedGoogle Scholar
  67. 67.
    Zhang F, Sautter K, Larsen AM, Findley DA, Davis RC, Samha H, Linford MR (2010) Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption. Langmuir 26:14648–14654PubMedGoogle Scholar
  68. 68.
    Sweetman MJ, Shearer CJ, Shapter JG, Voelcker NH (2011) Dual silane surface functionalization for the selective attachment of human neuronal cells to porous silicon. Langmuir 27:9497–9503PubMedGoogle Scholar
  69. 69.
    Arroyo-Hernández M, Martín-Palma RJ, Torres-Costa V, Martínez Duart JM (2006) Porous silicon optical filters for biosensing applications. J Non Cryst Solids 352:2457–2460Google Scholar
  70. 70.
    Serda RE, Mack A, Pulikkathara M, Zaske AM, Chiappini C, Fakhoury JR, Webb D, Godin B, Conyers JL, Liu XW, Bankson JA, Ferrari M (2010) Cellular association and assembly of a multistage delivery system. Small 6:1329–1340PubMedCentralPubMedGoogle Scholar
  71. 71.
    Makila E, Bimbo LM, Kaasalainen M, Herranz B, Airaksinen AJ, Heinonen M, Kukk E, Hirvonen J, Santos HA, Salonen J (2012) Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28:14045–14054PubMedGoogle Scholar
  72. 72.
    Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of sirna and DNA constructs. ACS Nano 3:3273–3286PubMedCentralPubMedGoogle Scholar
  73. 73.
    Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5:4131–4144PubMedCentralPubMedGoogle Scholar
  74. 74.
    Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Lindén M (2008) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3:197–206Google Scholar
  75. 75.
    Cheng SH, Lee CH, Chen MC, Souris JS, Tseng FG, Yang CS, Mou CY, Chen CT, Lo LW (2010) Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy. J Mater Chem 20:6149–6157Google Scholar
  76. 76.
    Ferris DP, Lu J, Gothard C, Yanes R, Thomas CR, Olsen J-C, Stoddart JF, Tamanoi F, Zink JI (2011) Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 7:1816–1826PubMedCentralPubMedGoogle Scholar
  77. 77.
    Porta F, Lamers GEM, Morrhayim J, Chatzopoulou A, Schaaf M, Den Dulk H, Backendorf C, Zink JI, Kros A (2013) Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv Healthc Mater 2:281–286PubMedGoogle Scholar
  78. 78.
    Wang Z, Xu B, Zhang L, Zhang J, Ma T, Zhang J, Fu X, Tian W (2013) Folic acid-functionalized mesoporous silica nanospheres hybridized with aie luminogens for targeted cancer cell imaging. Nanoscale 5:2065–2072PubMedGoogle Scholar
  79. 79.
    Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805PubMedCentralPubMedGoogle Scholar
  80. 80.
    Zhu CL, Song XY, Zhou WH, Yang HH, Wen YH, Wang XR (2009) An efficient cell-targeting and intracellular controlled-release drug delivery system based on msn-pem-aptamer conjugates. J Mater Chem 19:7765–7770Google Scholar
  81. 81.
    Rosenholm JM, Peuhu E, Bate-Eya LT, Eriksson JE, Sahlgren C, Lindén M (2010) Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small 6:1234–1241PubMedGoogle Scholar
  82. 82.
    Bimbo LM, Makila E, Laaksonen T, Lehto V-P, Salonen J, Hirvonen J, Santos HA (2011) Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32:2625–2633PubMedGoogle Scholar
  83. 83.
    Bimbo LM, Sarparanta M, Makila E, Laaksonen T, Laaksonen P, Salonen J, Linder MB, Hirvonen J, Airaksinen AJ, Santos HA (2012) Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 4:3184–3192PubMedGoogle Scholar
  84. 84.
    Santos HA, Hirvonen J (2012) Nanostructured porous silicon materials: potential candidates for improving drug delivery. Nanomedicine 7:1281–1284PubMedGoogle Scholar
  85. 85.
    Vale N, Makila E, Salonen J, Gomes P, Hirvonen J, Santos HA (2012) New times, new trends for ethionamide: in vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. Eur J Pharm Biopharm 81:314–323PubMedGoogle Scholar
  86. 86.
    Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320–327PubMedGoogle Scholar
  87. 87.
    Van De Ven AL, Kim P, Haley OH, Fakhoury JR, Adriani G, Schmulen J, Moloney P, Hussain F, Ferrari M, Liu X, Yun S-H, Decuzzi P (2012) Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release 158:148–155PubMedCentralPubMedGoogle Scholar
  88. 88.
    Van de Ven AL, Wu M, Lowengrub J, Mcdougall SR, Chaplain MA, Cristini V, Ferrari M, Frieboes HB (2012) Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv 2:011208PubMedCentralGoogle Scholar
  89. 89.
    Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157PubMedGoogle Scholar
  90. 90.
    Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, Han H-D, Shahzad MMK, Liu X, Bhavane R, Gu J, Fakhoury JR, Chiappini C, Lu C, Matsuo K, Godin B, Stone RL, Nick AM, Lopez-Berestein G, Sood AK, Ferrari M (2010) Sustained small interfering rna delivery by mesoporous silicon particles. Cancer Res 70:3687–3696PubMedCentralPubMedGoogle Scholar
  91. 91.
    Godin B, Tasciotti E, Liu X, Serda RE, Ferrari M (2011) Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res 44:979–989PubMedCentralPubMedGoogle Scholar
  92. 92.
    Upadhyay P (2006) Enhanced transdermal-immunization with diptheria-toxoid using local hyperthermia. Vaccine 24:5593–5598PubMedGoogle Scholar
  93. 93.
    Mann AP, Tanaka T, Somasunderam A, Liu X, Gorenstein DG, Ferrari M (2011) E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv Mater 23:H278–H282PubMedGoogle Scholar
  94. 94.
    Parodi A, Quattrocchi N, Van De Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–68PubMedCentralPubMedGoogle Scholar
  95. 95.
    Angelis FD, Pujia A, Falcone C, Iaccino E, Palmieri C, Liberale C, Mecarini F, Candeloro P, Luberto L, Laurentiis AD, Das G, Scalac G, Fabrizio ED (2010) Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in b cells tumor context. Nanoscale 2:2230–2236PubMedGoogle Scholar
  96. 96.
    Rytkonen J, Miettinen R, Kaasalainen M, Lehto V-P, Salonen J, Narvanen A (2012) Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes. J Nanomater 2012:9Google Scholar
  97. 97.
    Gu L, Ruff LE, Qin Z, Corr M, Hedrick SM, Sailor MJ (2012) Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic cd40 antibody. Adv Mater 24:3981–3987PubMedCentralPubMedGoogle Scholar
  98. 98.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346PubMedGoogle Scholar
  99. 99.
    Koch R (1890) On bacteriological research. August Hirsch Forest, BerlinGoogle Scholar
  100. 100.
    Forestier J (1934) Rheumatoid arthritis and its treatment by gold salts. Lancet 224:646–648Google Scholar
  101. 101.
    Khan JA, Kudgus RA, Szabolcs A, Dutta S, Wang E, Cao S, Curran GL, Shah V, Curley S, Mukhopadhyay D, Robertson JD, Bhattacharya R, Mukherjee P (2011) Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo. PLoS One 6:e20347PubMedCentralPubMedGoogle Scholar
  102. 102.
    Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Phil Trans Roy Soc Lond 147:145–181Google Scholar
  103. 103.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75Google Scholar
  104. 104.
    Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707PubMedGoogle Scholar
  105. 105.
    Nie X, Chen C (2012) Au nanostructures: an emerging prospect in cancer theranostics. Sci China Life Sci 55:872–883PubMedGoogle Scholar
  106. 106.
    Giersig M, Mulvaney P (1993) Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9:3408–3413Google Scholar
  107. 107.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Comm 801–802Google Scholar
  108. 108.
    Templeton AC, Wuelfing WP, Murray RW (1999) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36Google Scholar
  109. 109.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782PubMedGoogle Scholar
  110. 110.
    Li D, He Q, Cui Y, Duan L, Li J (2007) Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochem Biophys Res Commun 355:488–493PubMedGoogle Scholar
  111. 111.
    Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30:1928–1936PubMedCentralPubMedGoogle Scholar
  112. 112.
    Thomas M, Klibanov AM (2003) Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A 100:9138–9143PubMedCentralPubMedGoogle Scholar
  113. 113.
    Choi CHJ, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A 107:1235–1240PubMedCentralPubMedGoogle Scholar
  114. 114.
    Eghtedari M, Liopo AV, Copland JA, Oraevsky AA, Motamedi M (2008) Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 9:287–291Google Scholar
  115. 115.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004PubMedGoogle Scholar
  116. 116.
    El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834PubMedGoogle Scholar
  117. 117.
    Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80:1067–1072PubMedGoogle Scholar
  118. 118.
    Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634PubMedGoogle Scholar
  119. 119.
    Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. In: Ellis GP, Luscombe DK (eds) Progress in medicinal chemistry. Elsevier Science B.V, AmsterdamGoogle Scholar
  120. 120.
    Von Naegelli V (1893) Deut schr Schweiz Naturforsch Ges 33:174–182Google Scholar
  121. 121.
    Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28:237–259PubMedCentralPubMedGoogle Scholar
  122. 122.
    Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130PubMedGoogle Scholar
  123. 123.
    Mirsattari SM, Hammond RR, Sharpe MD, Leung FY, Young GB (2004) Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology 62:1408–1410PubMedGoogle Scholar
  124. 124.
    Fox CL (1968) Silver sulfadiazine—a new topical therapy for pseudomonas in burns. Arch Surg 96:184–188PubMedGoogle Scholar
  125. 125.
    Furr JR, Russell AD, Turner TD, Andrews A (1994) Antibacterial activity of actisorb-plus, actisorb and silver-nitrate. J Hosp Infect 27:201–208PubMedGoogle Scholar
  126. 126.
    Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with hiv-1. J Nanobiotechnology 3:6PubMedCentralPubMedGoogle Scholar
  127. 127.
    Nickel U, Zu Castell A, Pöppl K, Schneider S (2000) A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced raman spectroscopy. Langmuir 16:9087–9091Google Scholar
  128. 128.
    Shirtcliffe N, Nickel U, Schneider S (1999) Reproducible preparation of silver sols with small particle size using borohydride reduction: for use as nuclei for preparation of larger particles. J Colloid Interface Sci 211:122–129PubMedGoogle Scholar
  129. 129.
    Yin Y, Li Z-Y, Zhong Z, Gates B, Xia Y, Venkateswaran S (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527Google Scholar
  130. 130.
    Wu Q, Cao H, Luan Q, Zhang J, Wang Z, Warner JH, Watt A (2008) Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg Chem 47:5882–5888PubMedGoogle Scholar
  131. 131.
    Percival SL, Bowler P, Woods EJ (2008) Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Repair Regen 16:52–57PubMedGoogle Scholar
  132. 132.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83PubMedGoogle Scholar
  133. 133.
    Qureshi AT, Monroe WT, Lopez MJ, Janes ME, Dasa V, Park S, Amirsadeghi A, Hayes DJ (2011) Biocompatible/bioabsorbable silver nanocomposite coatings. J Appl Polym Sci 120:3042–3053Google Scholar
  134. 134.
    Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S (2010) Silver nano—a trove for retinal therapies. J Control Release 145:76–90PubMedGoogle Scholar
  135. 135.
    Lee J-S, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle − oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115PubMedCentralPubMedGoogle Scholar
  136. 136.
    Brown PK, Qureshi AT, Moll AN, Hayes DJ, Monroe WT (2013) Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS Nano 7:2948–2959PubMedGoogle Scholar
  137. 137.
    Zheng Y, Li Y, Deng Z (2012) Silver nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands. Chem Comm 48:6160–6162PubMedGoogle Scholar
  138. 138.
    Sur I, Cam D, Kahraman M, Baysal A, Culha M (2010) Interaction of multi-functional silver nanoparticles with living cells. Nanotechnol 21:175104Google Scholar
  139. 139.
    Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240PubMedCentralPubMedGoogle Scholar
  140. 140.
    Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99:12617–12621PubMedCentralPubMedGoogle Scholar
  141. 141.
    Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) Folate-receptor-mediated delivery of inp quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364–11371PubMedGoogle Scholar
  142. 142.
    Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018PubMedGoogle Scholar
  143. 143.
    Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of cdse − zns quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150Google Scholar
  144. 144.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762PubMedGoogle Scholar
  145. 145.
    Zhou M, Ghosh I (2007) Quantum dots and peptides: a bright future together. Biopolymers 88:325–339PubMedGoogle Scholar
  146. 146.
    Dif A, Boulmedais F, Pinot M, Roullier V, Baudy-Floc’h M, Coquelle FM, Clarke S, Neveu P, Vignaux F, Le Borgne R, Dahan M, Gueroui Z, Marchi-Artzner V (2009) Small and stable peptidic pegylated quantum dots to target polyhistidine-tagged proteins with controlled stoichiometry. J Am Chem Soc 131:14738–14746PubMedGoogle Scholar
  147. 147.
    Lee H, Kim IK, Park TG (2010) Intracellular trafficking and unpacking of sirna/quantum dot-pei complexes modified with and without cell penetrating peptide: confocal and flow cytometric fret analysis. Bioconjug Chem 21:289–295PubMedGoogle Scholar
  148. 148.
    Guo Y, Harirchian-Saei S, Izumi CM, Moffitt MG (2011) Block copolymer mimetic self-assembly of inorganic nanoparticles. ACS Nano 5:3309–3318PubMedGoogle Scholar
  149. 149.
    Schliehe C, Thiry M, Tromsdorf UI, Hentschel J, Weller H, Groettrup M (2011) Microencapsulation of inorganic nanocrystals into plga microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy. J Control Release 151:278–285PubMedGoogle Scholar
  150. 150.
    Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976PubMedGoogle Scholar
  151. 151.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446PubMedGoogle Scholar
  152. 152.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544PubMedCentralPubMedGoogle Scholar
  153. 153.
    Irrera A, Artoni P, Iacona F, Pecora EF, Franzo G, Galli M, Fazio B, Boninelli S, Priolo F (2012) Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique. Nanotechnology 23:075204PubMedGoogle Scholar
  154. 154.
    Mazumder S, Dey R, Mitra MK, Mukherjee S, Das GC (2009) Review: biofunctionalized quantum dots in biology and medicine. J Nanomater 2009Google Scholar
  155. 155.
    Pöselt E, Fischer S, Foerster S, Weller H (2009) Highly stable biocompatible inorganic nanoparticles by self-assembly of triblock-copolymer ligands. Langmuir 25:13906–13913PubMedGoogle Scholar
  156. 156.
    Walling M, Novak J, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. Int J Mol Sci 10:441–491PubMedCentralPubMedGoogle Scholar
  157. 157.
    Yong K-T, Ding H, Roy I, Law W-C, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated inp quantum dots. ACS Nano 3:502–510PubMedCentralPubMedGoogle Scholar
  158. 158.
    Derfus AM, Chan WCW, Bhatia SN (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18Google Scholar
  159. 159.
    Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169Google Scholar
  160. 160.
    Bhang SH, Won N, Lee TJ, Jin H, Nam J, Park J, Chung H, Park HS, Sung YE, Hahn SK, Kim BS, Kim S (2009) Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. ACS Nano 3:1389–1398PubMedGoogle Scholar
  161. 161.
    Yan J-J, Wang H, Zhou Q-H, You Y-Z (2011) Reversible and multisensitive quantum dot gels. Macromol 44:4306–4312Google Scholar
  162. 162.
    Mi L, Xiong R, Zhang Y, Yang W, Chen J, Wang P (2011) Microscopic observation of the intercellular transport of cdte quantum dot aggregates through tunneling-nanotubes. J Biomater Nanobiotechnol 2:172–179Google Scholar
  163. 163.
    Paliwal S, Menon GK, Mitragotri S (2006) Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J Invest Dermatol 126:1095–1101PubMedGoogle Scholar
  164. 164.
    Zhang LW, Yu WW, Colvin VL, Monteiro-Riviere NA (2008) Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228:200–211PubMedGoogle Scholar
  165. 165.
    Jeong SH, Kim JH, Yi SM, Lee JP, Kim JH, Sohn KH, Park KL, Kim M-K, Son SW (2010) Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method. Biochem Biophys Res Commun 394:612–615PubMedGoogle Scholar
  166. 166.
    Prow TW, Monteiro-Riviere NA, Inman AO, Grice JE, Chen X, Zhao X, Sanchez WH, Gierden A, Kendall MF, Zvyagin AV, Erdmann D, Riviere JE, Roberts MS (2012) Quantum dot penetration into viable human skin. Nanotoxicol 6:173–185Google Scholar
  167. 167.
    Labouta HI, Schneider M (2013) Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine 9:39–54PubMedGoogle Scholar
  168. 168.
    Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91:159–165PubMedGoogle Scholar
  169. 169.
    Popovic Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, Insin N, Nocera DG, Fukumura D, Jain RK, Bawendi MG (2010) A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Engl 49:8649–8652PubMedCentralPubMedGoogle Scholar
  170. 170.
    Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676PubMedGoogle Scholar
  171. 171.
    Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070PubMedGoogle Scholar
  172. 172.
    Wang CH, Hsu YS, Peng CA (2008) Quantum dots encapsulated with amphiphilic alginate as bioprobe for fast screening anti-dengue virus agents. Biosens Bioelectron 24:1018–1025PubMedGoogle Scholar
  173. 173.
    Fan HM, Olivo M, Shuter B, Yi JB, Bhuvaneswari R, Tan HR, Xing GC, Ng CT, Liu L, Lucky SS, Bay BH, Ding J (2010) Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging. J Am Chem Soc 132:14803–14811PubMedGoogle Scholar
  174. 174.
    Nikitin MP, Zdobnova TA, Lukash SV, Stremovskiy OA, Deyev SM (2010) Protein-assisted self-assembly of multifunctional nanoparticles. Proc Natl Acad Sci U S A 107:5827–5832PubMedCentralPubMedGoogle Scholar
  175. 175.
    Chen T, Zhao T, Wei D, Wei Y, Li Y, Zhang H (2013) Core-shell nanocarriers with zno quantum dots-conjugated au nanoparticle for tumor-targeted drug delivery. Carbohydr Polym 92:1124–1132PubMedGoogle Scholar
  176. 176.
    Dobson J (2008) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3:139–143PubMedGoogle Scholar
  177. 177.
    El Haj AJ, Glossop JR, Sura HS, Lees MR, Hu B, Wolbank S, Van Griensven M, Redl H, Dobson J (2012) An in vitro model of mesenchymal stem cell targeting using magnetic particle labelling. J Tissue Eng Regen Med. doi: 10.1002/term.1636 PubMedGoogle Scholar
  178. 178.
    Hughes S, Mcbain S, Dobson J, El Haj AJ (2008) Selective activation of mechanosensitive ion channels using magnetic particles. J Roy Soc Interface 5:855–863Google Scholar
  179. 179.
    Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021PubMedCentralPubMedGoogle Scholar
  180. 180.
    Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47:5362–5365PubMedGoogle Scholar
  181. 181.
    Das M, Mishra D, Dhak P, Gupta S, Maiti TK, Basak A, Pramanik P (2009) Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small 5:2883–2893PubMedGoogle Scholar
  182. 182.
    Maeng JH, Lee DH, Jung KH, Bae YH, Park IS, Jeong S, Jeon YS, Shim CK, Kim W, Kim J, Lee J, Lee YM, Kim JH, Kim WH, Hong SS (2010) Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31:4995–5006PubMedGoogle Scholar
  183. 183.
    Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in mr imaging. Eur Radiol 11:2319–2331PubMedGoogle Scholar
  184. 184.
    Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205PubMedGoogle Scholar
  185. 185.
    Shangary S, Qin D, Mceachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S (2008) Temporal activation of p53 by a specific mdm2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 105:3933–3938PubMedCentralPubMedGoogle Scholar
  186. 186.
    Zou P, Xu S, Povoski SP, Wang A, Johnson MA, Martin EW Jr, Subramaniam V, Xu R, Sun D (2009) Near-infrared fluorescence labeled anti-tag-72 monoclonal antibodies for tumor imaging in colorectal cancer xenograft mice. Mol Pharm 6:428–440PubMedCentralPubMedGoogle Scholar
  187. 187.
    Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733PubMedGoogle Scholar
  188. 188.
    Kas R, Sevinc E, Topal U, Acar HY (2010) A universal method for the preparation of magnetic and luminescent hybrid nanoparticles. J Phys Chem C 114:7758–7766Google Scholar
  189. 189.
    Zou P, Yu Y, Wang YA, Zhong Y, Welton A, Galban C, Wang S, Sun D (2010) Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol Pharm 7:1974–1984PubMedCentralPubMedGoogle Scholar
  190. 190.
    Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S (2010) Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 6:64–69PubMedCentralPubMedGoogle Scholar
  191. 191.
    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896PubMedCentralPubMedGoogle Scholar
  192. 192.
    Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162PubMedGoogle Scholar
  193. 193.
    Lee RJ, Low PS (1994) Delivery of liposomes into cultured kb cells via folate receptor-mediated endocytosis. J Biol Chem 269:3198–3204PubMedGoogle Scholar
  194. 194.
    Soppimath KS, Liu LH, Seow WY, Liu SQ, Powell R, Chan P, Yang YY (2007) Multifunctional core/shell nanoparticles self-assembled from pH-induced thermosensitive polymers for targeted intracellular anticancer drug delivery. Adv Funct Mater 17:355–362Google Scholar
  195. 195.
    Fan Z, Senapati D, Singh AK, Ray PC (2013) Theranostic magnetic core-plasmonic shell star shape nanoparticle for the isolation of targeted rare tumor cells from whole blood, fluorescence imaging, and photothermal destruction of cancer. Mol Pharm 10:857–866PubMedCentralPubMedGoogle Scholar
  196. 196.
    Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146PubMedGoogle Scholar
  197. 197.
    Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Res. EPub ahead of print, Acc ChemGoogle Scholar
  198. 198.
    Kale A, Bao Y, Zhou Z, Prevelige PE, Gupta A (2013) Directed self-assembly of cds quantum dots on bacteriophage p22 coat protein templates. Nanotechnology 24:045603. doi: 10.1088/0957-4484/24/4/045603 PubMedGoogle Scholar
  199. 199.
    Hemmer E, Takeshita H, Yamano T, Fujiki T, Kohl Y, Low K, Venkatachalam N, Hyodo H, Kishimoto H, Soga K (2012) In vitro and in vivo investigations of upconversion and nir emitting gd(2)o(3):Er(3)(+), yb(3)(+) nanostructures for biomedical applications. J Mater Sci Mater Med 23:2399–2412PubMedGoogle Scholar
  200. 200.
    Marchuk K, Guo Y, Sun W, Vela J, Fang N (2012) High-precision tracking with non-blinking quantum dots resolves nanoscale vertical displacement. J Am Chem Soc 134:6108–6111PubMedGoogle Scholar
  201. 201.
    Riedinger A, Pernia Leal M, Deka SR, George C, Franchini IR, Falqui A, Cingolani R, Pellegrino T (2011) “Nanohybrids” based on pH-responsive hydrogels and inorganic nanoparticles for drug delivery and sensor applications. Nano Lett 11:3136–3141PubMedGoogle Scholar
  202. 202.
    Manabe N, Hoshino A, Yi-Qiang L, Goto T, Kato N, Yamamoto S (2006) Quantum dot as a drug tracer in vivo. IEEE Trans Nanobioscience 5:263–267PubMedGoogle Scholar
  203. 203.
    Xiao J, Wu M, Kai G, Wang F, Cao H, Yu X (2011) Zno-zns qds interfacial heterostructure for drug and food delivery application: enhancement of the binding affinities of flavonoid aglycones to bovine serum albumin. Nanomedicine 7:850–858PubMedGoogle Scholar
  204. 204.
    Ho YP, Chen HH, Leong KW, Wang TH (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-fret. J Control Release 116:83–89PubMedCentralPubMedGoogle Scholar
  205. 205.
    Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of her2/neu gene via rna interference. Biomaterials 28:1565–1571PubMedGoogle Scholar
  206. 206.
    Zaman MB, Baral TN, Jakubek ZJ, Zhang J, Wu X, Lai E, Whitfield D, Yu K (2011) Single-domain antibody bioconjugated near-IR quantum dots for targeted cellular imaging of pancreatic cancer. J Nanosci Nanotechnol 11:3757–3763PubMedGoogle Scholar

Copyright information

© Controlled Release Society 2015

Authors and Affiliations

  • Hélder A. Santos
    • 1
  • Luis M. Bimbo
    • 1
  • Leena Peltonen
    • 1
  • Jouni Hirvonen
    • 1
    Email author
  1. 1.Division of Pharmaceutical TechnologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations