Fabrication of Three-Dimensional Nanostructured Materials by Interference Lithography and Inversion Process

  • Sung-Gyu Park
  • Dong-Ho Kim
  • Kee-Seok Nam
  • Yongsoo Jeong
  • Paul V. Braun


Interference lithography has great potential for simple and rapid production of defect-free, large-area periodic nanostructures. In interference lithography, multi-beam interference produces multi-dimensional intensity profile of light in space. The interference-induced intensity profile can be transferred to photosensitive materials in very short exposure times, typically less than 1 sec. More importantly, interference lithography allows for precise control of the feature size and a variety of lattice symmetries through a proper arrangement of laser beams. In this paper, the fabrication of various polymer nanostructures is demonstrated. Also, 2D gold nanohole array is formed by using interference lithography and Ar ion milling process. Finally, 3D titania inverse structures are generated by sol-gel chemistry reaction, which is very attractive for the simplicity and ease of fabrication. We believe that facile and reliable methods for generating metal or semiconductor nanostructured materials can be applied to photonic sensors and optoelectronic devices.


Interference lithography 3D nanostructured materials Optoelectronic devices Inversion process Titania 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jang JH, Ullal CK, Maldovan M, Gorishny T, Kooi S, Koh, CY, Thomas EL (2007) 3D Micro- and nanostructures via interference lithography. Adv Funct Mater 17: 3027–3041Google Scholar
  2. 2.
    Moon JH, Ford J, Yang S, (2006) Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography. Polym Adv Technol 17: 83–93Google Scholar
  3. 3.
    Lee SK, Park SG, Moon JH, Yang SM (2008) Holographic fabrication of photonic nanostructures for optofluidic integration. Lab Chip 8: 388–391Google Scholar
  4. 4.
    Galusha JW, Tsung CK, Stucky GD, Bartl MH (2008) Optimizing sol−gel infiltration and processing methods for the fabrication of high-quality planar titania inverse opals. Chem Mater 20:4925–4930Google Scholar
  5. 5.
    Park SG, Lee SK, Moon JH, Yang SM (2009) Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing. Lab Chip 9: 3144–3150Google Scholar
  6. 6.
    Park SG, Moon JH, Lee SK, Shim JW, Yang SM (2010) Bioinspired holographically featured superhydrophobic and supersticky nanostructured materials. Langmuir 26: 1468–1472Google Scholar
  7. 7.
    Park SG, Miyake M, Yang SM, Braun PV (2011) Cu2O inverse woodpile photonic crystals by prism holographic lithography and electrodeposition. Adv Mater 23: 2749–2752Google Scholar
  8. 8.
    Liang G, Zhu X, Xu Y, Yang S (2010) Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure. Adv Mater 22: 4524–4529Google Scholar
  9. 9.
    Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404: 53–56Google Scholar
  10. 10.
    Miyake M, Chen YC, Braun PV, Wiltzius P (2009) Fabrication of three-dimensional photonic crystal using multi-beam interference lithography and electrodeposition. Adv Mater 21: 3012–3015Google Scholar
  11. 11.
    Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Letter 4: 2015–2018Google Scholar
  12. 12.
    Gordon R, Hughes M, Leathem B, Kavanagh KL, Brolo AG, (2005) Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film. Nano Letter 5: 1243–1247Google Scholar
  13. 13.
    Brolo AG, Kwok SG, Moffitt MG, Gordon R, Riordon J, Kavanagh KL (2005) Enhanced fluorescence from arrays of nanoholes in a gold film. J AM CHEM SOC 127: 14936–14941Google Scholar
  14. 14.
    Leebeeck AD, Kumar LK, Lange VD, Sinton D, Gordon R, Brolo AG (2007) On-chip surface-based detection with nanohole arrays. Anal Chem 79:4094–4100Google Scholar
  15. 15.
    Gordon R, Sinton D, Kavanagh KL, Brolo AG, (2008) A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 8: 1049–1057Google Scholar
  16. 16.
    Heo CJ, Kim SH, Jang SG, Lee SY, Yang SM (2009) Gold nanograils with tunable dipolar multiple plasmon resonances. Adv Mater 21: 1726–1731Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sung-Gyu Park
    • 1
  • Dong-Ho Kim
    • 1
  • Kee-Seok Nam
    • 1
  • Yongsoo Jeong
    • 1
  • Paul V. Braun
    • 2
  1. 1.Korea Institute of Materials ScienceChangwon, GyeongnamKorea
  2. 2.Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations