Advertisement

Performance and Stability of Organic Trimethine Cyanine Dye—C60 Heterojunction Solar Cells

  • Gaëtan Wicht
  • Etienne Berner
  • Timo Jäger
  • Hui Zhang
  • Roland Hany
  • Frank Nüesch
Chapter

Abstract

The performance and stability of cyanine dye—C60 heterojunction solar cells were investigated both in the regular and the inverted geometry. While active layers absorption was stable under inert environment (N2), we observed a dependence on cell performances as a function of storage time for the regular geometry. This was attributed to the influence of the coating solvent on the cyanine dye film/buffer layer interface as well as the top electrode/buffer layer interface. Chlorobenzene as solvent and silver as low work function electrode were proposed as good candidates to improve stability. The inverted geometry was found to be another solution for the stability enhancement due to well protected active layers and more stable interfaces.

Keywords

Organic photovoltaics Cyanine dyes Stability Interfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lloyd MT, Anthony JE, Malliaras G G (2007) Photovoltaics from soluble small molecules. Mater Today 10:34-41Google Scholar
  2. 2.
    Walker B, Kim C, Nguyen T-Q (2011) Small molecule solution-processed bulk heterojunction solar cells. Chem Mater 23:470-482Google Scholar
  3. 3.
    Hany R, Fan B, Castro FA (2011) Strategies to improve cyanine multilayer organic solar cells. Prog Photovolt: Res Appl 19:851-857Google Scholar
  4. 4.
    Benmansour H, Castro FA, Nagel M et al (2007) Ionic space charge driven organic photovoltaic devices. Chimia 61:787-791Google Scholar
  5. 5.
    Fan B, Castro FA, Chu BT-T et al (2010) Improved performance of cyanine solar cells with polyaniline anodes. J Mater Chem 20:2952-2955Google Scholar
  6. 6.
    Brabec CJ, Gowrisanker S, Halls JJM et al (2010) Polymer-fullerene bulk-heterojunction solar cells, Adv Mater 22:3839-3856Google Scholar
  7. 7.
    Perez MD, Borek C, Forrest S R et al (2009) Molecular and morphological influences on the open circuit voltage of organic photovoltaic devices. J Am Chem Soc 131:9281-9286Google Scholar
  8. 8.
    Heier J, Steiger R, Nüesch F et al (2010) Fast assembly of cyanine dyes into aggregates onto [6,6]-Phenyl C-61-Butyric Acid Methyl Ester surfaces from organic solvents. Langmuir 26:3955-3961Google Scholar
  9. 9.
    Tatikolov AS, Ishchenko AA, Ghelli S et al (1998) Ion pairs of indobenzimidazolo cyanines: a structural study based on conductivity, absorption, fluorescence and H-1-NMR. J Mol Structure 471:145-159Google Scholar
  10. 10.
    Park J, Yang RQ, Hoven C V et al (2008) Structural characterization of conjugated polyelectrolyte electron transport layers by NEXAFS spectroscopy. Adv Mater 20:2491-2496Google Scholar
  11. 11.
    Lenes M, Bolink HJ (2010) Ionic space-charge effects in solid state organic photovoltaics. ACS Appl Mater & Interfaces 2:3664-3668Google Scholar
  12. 12.
    Chang LL, Lademann HWA, Bonekamp JB et al (2011) Effect of trace solvent on the morphology of P3HT:PCBM bulk heterojunction solar cells. Adv Funct Mater 21:1779-1787Google Scholar
  13. 13.
    Greczynski G, Kugler T, Keil M et al (2001) Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: a mini-review and some new results. J Electron Spectrosc Relat Phenom 121:1-17Google Scholar
  14. 14.
    Jeon SO, Lee JY (2012) Improved lifetime in organic solar cells using a bilayer cathode of organic interlayer/Al. Sol Energy Mater Sol Cells 101:160-165Google Scholar
  15. 15.
    Yang L, Xu H, Tian S et al (2010) Effect of cathode buffer layer on the stability of polymer bulk heterojunction solar cells. Sol Energy Mater Sol Cells 94:1831-1834Google Scholar
  16. 16.
    Wang Y, Yang L, Yao C et al (2011) Enhanced performance and stability in polymer photovoltaic cells using lithium benzoate as cathode interfacial layer. Sol Energy Mater Sol Cells 95:1243-1247Google Scholar
  17. 17.
    Song QL, Li FY, Yang H et al (2005) Small-molecule organic solar cells with improved stability. Chem Phys Lett 416:42-46Google Scholar
  18. 18.
    Krebs FC, Norrman K (2007) Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of testing. Prog Photovoltaics 15:697-712Google Scholar
  19. 19.
    Norrman K, Gevorgyan SA, Krebs FC (2009) Water-Induced Degradation of Polymer Solar Cells Studied by (H2O)-O-18 Labeling. ACS Appl Mater Interfaces 1:102-112Google Scholar
  20. 20.
    Brabec CJ, Shaheen SE, Winder C et al (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288-1290Google Scholar
  21. 21.
    Tavakkoli M, Ajeian R, Badrabadi MN et al (2011) Progress in stability of organic solar cells exposed to air. Sol Energy Mater Sol Cells 95:1964-1965Google Scholar
  22. 22.
    Lloyd MT, Olson DC, Lu P et al (2009) Impact of contact evolution on the shelf life of organic solar cells. J Mater Chem 19:7638-7642Google Scholar
  23. 23.
    Jorgensen M, Norrman K, Gevorgyan SA et al (2012) Stability of polymer solar cells. Adv Mater 24:580-612Google Scholar
  24. 24.
    Vivo P, Jukola J, Ojala M et al (2008) Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air. Sol Energy Mater Sol Cells 92:1416-1420Google Scholar
  25. 25.
    Zhang F, Xu X, Tang W et al (2011) Recent development of the inverted configuration organic solar cells. Sol Energy Mater Sol Cells 95:1785-1799Google Scholar
  26. 26.
    Song QL, Wang ML, Obbard EG et al (2006) Degradation of small-molecule organic solar cells. Appl Phys Lett 89Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gaëtan Wicht
    • 1
  • Etienne Berner
    • 1
  • Timo Jäger
    • 2
  • Hui Zhang
    • 1
  • Roland Hany
    • 1
  • Frank Nüesch
    • 1
  1. 1.Laboratory for Functional Polymers, EmpaSwiss Federal Institute for Materials Science and TechnologyDübendorfSwitzerland
  2. 2.Laboratory for Thin Films and Photovoltaics, EmpaSwiss Federal Institute for Materials Science and TechnologyDübendorfSwitzerland

Personalised recommendations