Membranes Made of Hardened Cement Paste for Processing Wood Gas—Influence of Paste Composition on Separation Factors

  • Gregor J. G. Gluth
  • Maria Gaggl
  • Weiqi Zhang
  • Bernd Hillemeier
  • Frank Behrendt
Chapter

Abstract

The efficiency of wood gasification can be improved by applying membrane based gas separation operations in several of its sub-processes. In the present study the use of membranes made of hardened cement pastes for this purpose was investigated to provide a low cost alternative to conventional membrane materials. The pastes were tested for their diffusional properties in a Wicke-Kallenbach cell and analyzed with regard to their pore structure. The use of low water to binder ratios and slag and/or pozzolans led to a finer pore structure and higher separation factors; in particular, an approximately linear dependence of the separation factors on the threshold radii was observed. The results implicated that Knudsen diffusion is the prevailing diffusion mechanism in the membranes. Deviations from the theoretically expected separation factors were found, which may be ascribed to concentration polarization and channeling effects.

Keywords

Hardened cement paste Pore structure Diffusion Gas separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was funded by the Fachangentur nachwachsende Rohstoffe e.V. (Agency for Renewable Resources) under grant no. 22010502.

References

  1. 1.
    Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74:631–653Google Scholar
  2. 2.
    Gerber S, Behrendt F, Oevermann M (2010) An Eulerian modeling approach of wood gasification in a bubbling fluidized bed reactor using char as bed material. Fuel 89:2903–2917Google Scholar
  3. 3.
    Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, ChichesterGoogle Scholar
  4. 4.
    Melin T, Rautenbach R (2007) Membranverfahren: Grundlagen der Modul- und Anlagenauslegung, 3rd edn. Springer, BerlinGoogle Scholar
  5. 5.
    Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes – state of their development and perspective. Microporous Mesoporous Mater 38:3–24Google Scholar
  6. 6.
    Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of art. Ind Eng Chem Res 48:4638–4663Google Scholar
  7. 7.
    Abbas A, Carcasses M, Ollivier J-P (1999) Gas permeability of concrete in relation to its degree of saturation. Mater Struct 32:3–8Google Scholar
  8. 8.
    Farage MCR, Sercombe J, Gallé C (2003) Rehydration and microstructure of cement paste after heating at temperatures up to 300 °C. Cem Concr Res 33:1047–1056Google Scholar
  9. 9.
    Lion M, Skoczylas F, Lafhaj Z, Sersar M (2005) Experimental study on a mortar. Temperature effects on porosity and permeability. Residual properties or direct measurements under temperature. Cem Concr Res 35:1937–1942Google Scholar
  10. 10.
    Sercombe J, Vidal R, Gallé C, Adenot F (2007) Experimental study of gas diffusion in cement paste. Cem Concr Res 37:579–588Google Scholar
  11. 11.
    Gluth GJG (2011) Die Porenstruktur von Zementstein und seine Eignung zur Gastrennung. PhD Thesis, Technische Universität Berlin, BerlinGoogle Scholar
  12. 12.
    Diamond S (2000) Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res 30:1517–1525Google Scholar
  13. 13.
    Härdtl R (1995) Veränderungen des Betongefüges durch die Wirkung von Steinkohlen-flugasche und ihr Einfluß auf die Betoneigenschaften. Schriftenr Deutscher Ausschuss für Stahlbeton 448. Beuth, BerlinGoogle Scholar
  14. 14.
    Sing KSW (1967) Assessment of microporosity. Chem Ind (London) 829–830Google Scholar
  15. 15.
    Richardson IG, Groves GW (1992) Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag. J Mater Sci 27:6204–6212Google Scholar
  16. 16.
    Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, LondonGoogle Scholar
  17. 17.
    Richardson IG (1999) The nature of C-S-H in hardened cements. Cem Concr Res 29:1131–1147Google Scholar
  18. 18.
    Hüttl R, Hillemeier B (2000) Hochleistungsbeton – Beispiel Säureresistenz. Betonwerk Fertigteiltech Int 66(1):52–60Google Scholar
  19. 19.
    Gluth GJG, Zhang W, Gaggl M, Hillemeier B, Behrendt F (2012) Multicomponent gas diffusion in hardened cement paste at temperatures up to 350 °C. Cem Concr Res 42:656–664Google Scholar
  20. 20.
    Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena, revised 2nd edn. Wiley, New YorkGoogle Scholar
  21. 21.
    Wedler G (2004) Lehrbuch der Physikalischen Chemie, 5th edn. Wiley-VCH, WeinheimGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gregor J. G. Gluth
    • 1
  • Maria Gaggl
    • 2
  • Weiqi Zhang
    • 2
  • Bernd Hillemeier
    • 3
  • Frank Behrendt
    • 2
  1. 1.BAM Federal Institute for Materials Research and Testing, Division 7.4Technology of Construction MaterialsBerlinGermany
  2. 2.Institute for Energy EngineeringTechnische Universität BerlinBerlinGermany
  3. 3.Institute for Civil EngineeringTechnische Universität BerlinBerlinGermany

Personalised recommendations