Additive Micro-Manufacturing of Designer Materials

  • Eric Duoss
  • Cheng Zhu
  • Kyle Sullivan
  • John Vericella
  • Jonathan Hopkins
  • Rayne Zheng
  • Andrew Pascall
  • Todd Weisgraber
  • Joshua Deotte
  • James Frank
  • Howon Lee
  • David Kolesky
  • Jennifer Lewis
  • Daniel Tortorelli
  • David Saintillan
  • Nicholas Fang
  • Joshua Kuntz
  • Christopher Spadaccini
Chapter

Abstract

Material properties are governed by the chemical composition and spatial arrangement of constituent elements at multiple length scales. This fundamentally limits material properties with respect to each other creating trade-offs when selecting materials for a specific application. For example, strength and density are inherently linked so that, in general, the more dense the material, the stronger it is in bulk form. Other coupled material properties include thermal expansion and thermal conductivity, hardness and fracture toughness, strength and thermal expansion, etc. We are combining advanced microstructural design, using flexure and screw theory as well as topology optimization, with new additive micro- and nano-manufacturing techniques to create new material systems with previously unachievable property combinations. Our manufacturing techniques include Projection Microstereolithography (PμSL), Direct Ink Writing (DIW), and Electrophoretic Deposition (EPD). These processes are capable of reliably producing designed architectures that are highly three-dimensional, multi-scale, and often composed of multiple constituent materials.

Keywords

Additive manufacturing Designer materials Advanced materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. IM release number LLNL-CONF-567932. This work was supported by LLNL LDRD 11-SI-005 and the DARPA DSO MCMA program. *Primary author contact information: Dr. Eric Duoss, duoss1@llnl.gov. Principal investigator contact information: Dr. Christopher Spadaccini, spadaccini2@llnl.gov.

References

  1. 1.
    Ashby MF (2005) Materials Selection in Mechanical Design. Butterworth-Heinemann, BurlingtonGoogle Scholar
  2. 2.
    Launey ME, Munch E, Alsem DH et al (2010) A novel biomimetic approach to the design of high-performance ceramic-metal composites. J R Soc Interface 7: 741-753Google Scholar
  3. 3.
    Jefferson G, Parthasarathy TA, Kerans RJ (2009) Tailorable thermal expansion hybrid structures. International Journal of Solids and Structures 46: 2372-2387Google Scholar
  4. 4.
    Lakes R (1996) Cellular solid structures with unbounded thermal expansion. Journal of Materials Science Letters 15: 475-477Google Scholar
  5. 5.
    Sigmund O, Torquato S (1996) Composites with extremal thermal expansion coefficients. Applied Physics Letters 69: 3203Google Scholar
  6. 6.
    Steeves CA, Lucato SLdSe, He M et al (2007) Concepts for structurally robust materials that combine low thermal expansion with high stiffness. Journal of the Mechanics and Physics of Solids 55: 1803-1822Google Scholar
  7. 7.
    Cox A, Xia C, Fang N (2006) Microstereolithography: A Review. Proceedings of ICOMM: International Conference on Micro-Manufacturing, UrbanaGoogle Scholar
  8. 8.
    Spadaccini CM, Farquar G, Weisgraber T et al (2009) High Resolution Projection Microstereolithography for 3-D Fabrication. National Nanomanufacturing Summit, BostonGoogle Scholar
  9. 9.
    Sun C, Fang N, Wu DM et al (2005) Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators: A Physical 121: 113-120Google Scholar
  10. 10.
    Spadaccini CM, Farquar G, Weisgraber T et al (2009) High Resolution Projection Microstereolithography for 3-D Fabrication. National Nanomanufacturing Summit, Boston, MAGoogle Scholar
  11. 11.
    Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science 52: 1–61Google Scholar
  12. 12.
    Ferrari B, Moreno R (2000) Zirconia thick films deposited on nickel by aqueous electrophoretic deposition. J. Electrochem. Soc. 147: 2987-2992Google Scholar
  13. 13.
    Li HX, Lin MZ, Hou JG (2000) Growth of metal/organism multilayer films from ligand-stabilized silver nanoparticles. J. Mat. Sci. Lett. 19: 963-964Google Scholar
  14. 14.
    Velev OD, Bhatt KH (2006) On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2: 738-750Google Scholar
  15. 15.
    Ordung M, Lehmann J, Ziegler G (2004) Fabrication of fibre reinforced green bodies by electrophoretic deposition of silicon powder from aqueous suspensions. J. Mat. Sci. 39: 889-894Google Scholar
  16. 16.
    Hayward RC, Saville DA, Aksay IA (2000) Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 404: 56-59Google Scholar
  17. 17.
    Kruger HG, Knote A, Schindler U et al (2004) Composite ceramic-metal coatings by means of combined electrophoretic deposition and galvanic methods. J. Mat. Sci. 39: 839-844Google Scholar
  18. 18.
    Tabellion J, Clasen R (2004) Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advanced ceramics and glasses – applications. J. Mat. Sci. 39: 803-811Google Scholar
  19. 19.
    Uchikoshi T, Ozawa K, Hatton BD et al (2001) Dense, bubble-free ceramic deposits from aqueous suspensions by electrophoretic deposition. J. Mater. Res. 16: 321-324Google Scholar
  20. 20.
    Duoss EB, Twardowski M, Lewis JA (2007) Sol-Gel Inks for Direct-Write Assembly of Functional Oxides. Advanced Materials 19: 3485-3489Google Scholar
  21. 21.
    Lewis JA (2002) Direct-write assembly of ceramics from colloidal inks. Curr. Opin. Solid State Mat. Sci. 6: 245-250Google Scholar
  22. 22.
    Smay JE, Cesarano J, Lewis JA (2002) Colloidal Inks for Directed Assembly of 3-D Periodic Structures. Langmuir 18: 5429-5437Google Scholar
  23. 23.
    Therriault D, Shepherd RF, White SR et al (2005) Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Advanced Materials 17: 395-399Google Scholar
  24. 24.
    Gratson GM, Xu MJ, Lewis JA (2004) Microperiodic structures - Direct writing of three-dimensional webs. Nature 428: 386-386Google Scholar
  25. 25.
    Ghosh S, Parker ST, Wang XY et al (2008) Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv. Funct. Mater. 18: 1883-1889Google Scholar
  26. 26.
    Ahn BY, Duoss EB, Motala MJ et al (2009) Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science 323: 1590-1593Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eric Duoss
    • 1
  • Cheng Zhu
    • 1
  • Kyle Sullivan
    • 1
  • John Vericella
    • 1
  • Jonathan Hopkins
    • 1
  • Rayne Zheng
    • 1
  • Andrew Pascall
    • 1
  • Todd Weisgraber
    • 1
  • Joshua Deotte
    • 1
  • James Frank
    • 1
  • Howon Lee
    • 3
  • David Kolesky
    • 2
  • Jennifer Lewis
    • 2
  • Daniel Tortorelli
    • 2
  • David Saintillan
    • 2
  • Nicholas Fang
    • 3
  • Joshua Kuntz
    • 1
  • Christopher Spadaccini
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations