Advertisement

Study of The Cytotoxicity of The Nitinol Surface with The Anodic Treatment

  • S. Y. Chen
  • W. C. Wang
  • Y. N. Chen
  • W. J. Shih
Chapter

Abstract

Nitinol, the nickel-titanium alloy, is equipped with good physical and mechanical properties and has been used in various medical devices. However, the releasing of the nickel ions causes the immunological problems in the human body that should be seriously considered. This article aims to study the effect of anodic treatment with various voltages on the cytotoxicity of the nitinol surface. The response index used for estimating the cytotoxicity shows high voltage anodic treatment to produce thick oxide layer that prevents the nickel ion from releasing, and greatly reduces the nitinol cytotoxicity.

Keywords

Cytotoxicity Nitinol Anodic treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trépanier C, Tabrizian M, Yahia LH et al (1998) Effect of modification of the oxide layer on NiTi stent corrosion resistance. J Biomed Mat Res A 43:433-440Google Scholar
  2. 2.
    Venugopalan R, Trépanier C (2000) Assessing
the
corrosion
behavior
of
Nitinol
for
minimally‐invasive
device
design. Invas ther & Allied Technol, 9(2): 67-74Google Scholar
  3. 3.
    Ryhänen J (2000). Biocompatibility of Nitinol. Min Invas Ther Allied Technol 9: 99-106.Google Scholar
  4. 4.
    Riepe G, Heintz C, Kaiser E et al (2002) What can we learn from explanted endovascular devices? Eur J Vasc Endovasc Surg. 24(2):117-122.Google Scholar
  5. 5.
    Gimenez-Arnau A, Riambau V, Serra-Baldrich E, Camarasa JG (2000) Metal-induced generalized pruriginous dermatitis and endovascular surgery. Contact Dermatitis 43(1):35-40.Google Scholar
  6. 6.
    Barrett RD, Bishara SE, Quinn JK (1993) Biodegradation of orthodontic appliances. Part I. Biodegradation of nickel and chromium in vitro. Am J Orthod Dentofacial Orthop 103(1):8-14.Google Scholar
  7. 7.
    Wever D, Velderhuizen A, De Vries J et al (1998) Electrochemical and surface characterization of NiTi alloy. Biomaterials 19:761-769.Google Scholar
  8. 8.
    Cui Z, Man H, Yang X (2005) The corrosion and nickel release behavior of laser surface-melted NiTi shape memory alloys in Hanks solution. Surf Coat Technol 192:347-353.Google Scholar
  9. 9.
    Arndt M, Bruck A, Scully T et al (2005) Nickel ion release from orthodontic NiTi wires under simulation of realistic in-situ conditions. J Mater Sci 40:3659-3667.Google Scholar
  10. 10.
    Gu YW, Tay BY, Lim CS, Yong MS (2005) Characterization of bioactive surface oxidation layer on NiTi alloy. Applied Surf Sci 252(5):2038–2049.Google Scholar
  11. 11.
    O’Brien B, Carroll WM, Kelly MJ (2002) Passivation of nitinol wire for vascular implants - a demonstration of the benefits, Biomaterials 23:1739-1748.Google Scholar
  12. 12.
    Chu CL, Chung CY, Zhou J et al (2005) Fabrication and characteristics of bioactive sodium titanate/titania graded film on NiTi shape memory alloy. J Biomed Mater Res A 75(3):595-602.Google Scholar
  13. 13.
    Cui ZD, Chen MF, Zhang LY et al (2008) Improving the biocompatibility of NiTi alloy by chemical treatments: An in vitro evaluation in 3T3 human fibroblast cell. Mater Sci Eng C 28(7):1117-1122.Google Scholar
  14. 14.
    Plant SD, Grant DM, Leach L (2005) Behaviour of human endothelial cells on surface modified NiTi alloy. Biomaterials 26(26):5359-5367.Google Scholar
  15. 15.
    Shevchenko N, Pham MT, Maitz MF (2004) Studies of surface modified NiTi alloy. App Surf Sci 235(1):2126-2131.Google Scholar
  16. 16.
    Wirth C, Grosgogeat B, Lagneau C et al (2008) Biomaterial surface properties modulate in vitro rat calvaria osteoblasts response: Roughness and or chemistry? Mater Sci Eng C 28 : 990-1001.Google Scholar
  17. 17.
    Yeung KWK, Poon RWY, Liu XM et al (2007) Nitrogen plasma-implanted nickel titanium alloys for orthopedic use. Surf Coat Tech 201(9-11):5607-5612.Google Scholar
  18. 18.
    Waver DJ, Veldhuizen AG, Vereis JD et al (1998) Electrochemical and surface characterization of nickel-titanium alloy. Biomaterials 19:761-769.Google Scholar
  19. 19.
    Pohl M, Hesing C, Frenzel J. (2004) Electrolytic processing of NiTi shape memory alloys. Mater Sci Eng A378:191-199.Google Scholar
  20. 20.
    Barison S, Cattarin S, Daolio S, Musiani M, Tuissi A (2004) Characterization of surface oxidation of nickel-titanium alloy by ion-beam and electrochemical techniques. Electrochem Acta 50:11-18.Google Scholar
  21. 21.
    Fushimi K, Startmann M, Hassel A (2006) Electropolishing of NiTi shape memory alloys in methanolic H2SO4. Electrochem Acta 52:1290-1295.Google Scholar
  22. 22.
    Shi P, Cheng F, Man H (2007) Improvement in corrosion resistance of NiTi by anodization in acetic acid. Mater Lett 61:2385-2388.Google Scholar
  23. 23.
    Kawakita J, Startmann M, Hassel W (2007) High voltage pulse anodization of a NiTi shape memory alloy. J Electrochem Soc 154: C294-298.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Y. Chen
    • 1
  • W. C. Wang
    • 1
  • Y. N. Chen
    • 1
    • 2
  • W. J. Shih
    • 1
  1. 1.Combination Medical Device Technology SectionMetal Industries Research and Development CentreKaohsiungTaiwan
  2. 2.Department of Biomedical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations