Advertisement

Engineering graphene superlattices with crystallographic orien-tation control using atomic force microscope

  • Clara M. Almeida
  • Pedro M. Bede
  • Benjamin Fragneaud
  • Carlos A. Achete
Chapter

Abstract

In this work we present a route to engineer bilayer graphene superlattices via direct nanomanipulation of monolayer graphene sheets by the mean of atomic force microscopy. In order to obtain such structures we manipulate the graphene sheet using an A FM tip in contact mode by scanning it parallel to the edge direction. Since the static surface atomic potential created by the twisted bilayer structure depends on the mismatch angle between the top and bottom layers, we carried out lattice resolution images in order to determine the crystallographic orientation of the graphene and of the folded twisted bilayer.

Keywords

Graphene Superlattice Atomic force microscopy Lateral force microscopy Nanomanipulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B Borca, S Barja, M Garnica et al (2010) Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001). New J Phys 12: 093018Google Scholar
  2. 2.
    M Yankowitz, J Xue, D Cormode et al (2012) Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys 8: 382-386Google Scholar
  3. 3.
    R Martinazzo, S Casolo, G F Tantardini (2010) Symmetry-induced band-gap opening in graphene superlattices. Phys Rev B 81: 245420Google Scholar
  4. 4.
    H Şahin, S Ciraci1 (2011) Structural, mechanical, and electronic properties of defect-patterned graphene nanomeshes from first principles. Phys. Rev. B 84: 035452Google Scholar
  5. 5.
    F Guinea, T Low (2010) Band structure and gaps of triangular graphene superlattices. Phil Trans R Soc A 368: 5391-5402Google Scholar
  6. 6.
    D Tománek, S G Louie, H J Mamin, D W Abraham, R EThomson, E Ganz, J Clarke (1987) Theory and observation of highly asymmetric atomic structure in scanning-tunneling-microscopy images of graphite. Phys Rev B 35: 7790Google Scholar
  7. 7.
    M Killi,S Wu, A Paramekanti (2011) Band structures of bilayer graphene superlattices. Phys Rev Lett 107: 086801Google Scholar
  8. 8.
    E SuárezMorell, J D Correa, P Vargas, M Pacheco, Z Barticevic (2010) Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys Rev B 82:121407Google Scholar
  9. 9.
    V Carozo, C M Almeida, E H M Ferreira, L G Cancado, C A Achete, A Jorio (2011) Raman signature of graphene superlattices. Nano Lett 11 (11): 4527Google Scholar
  10. 10.
    R W Havener, H Zhuang, L Brown, R Hennig, J Park (2012) Angle-Resolved Raman Imaging of Interlayer Rotations and Interactions in Twisted Bilayer Graphene. Nano Lett 12 (6): 3162–3167Google Scholar
  11. 11.
    M J Allen, M Wang, S A Jannuzzi, Y Yang, KL Wang, RB Kaner (2009) Chemically induced folding of single and bilayer graphene. Chem Commun 41:6285Google Scholar
  12. 12.
    L X Li, R P Liu, Z W Chen, Q Wang et al (2006) Tearing, folding and deformation of a carbon-carbon sp2-bonded network. Carbon 44: 1544Google Scholar
  13. 13.
    C M Mate, G M McClelland, R Erlandsson, S Chiang (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59: 1942Google Scholar
  14. 14.
    D R Baselt, J D Baldeschwieler (1992) Lateral Forces During Atomic Force Microscopy of Graphite in Air. J Vac Sci Technol B 10: 2316Google Scholar
  15. 15.
    W-C Lai, S-C Chin, Y-C Chang, L-Y Chen, C-S Chang (2010) Lattice-resolved frictional pattern probed by tailored carbon nanotubes. Nanotech 21: 055702Google Scholar
  16. 16.
    C M Almeida, V Carozo, R Prioli, C A Achete (2011) Identification of graphene crystallographic orientation by atomic force microscopy. J Appl Phys 110: 086101Google Scholar
  17. 17.
    K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306: 666-669Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Clara M. Almeida
    • 1
  • Pedro M. Bede
    • 1
  • Benjamin Fragneaud
    • 1
    • 2
  • Carlos A. Achete
    • 1
    • 2
  1. 1.Divisão de Metrologia de MateriaisInstituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO)são PauloBrazil
  2. 2.Departamento de Engenharia Metalúrgica E de MateriaisUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations