Skip to main content

Exponentially Smoothed Interactive Gaze Tracking Method

  • Conference paper
Computer Vision and Graphics (ICCVG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8671))

Included in the following conference series:

Abstract

Gaze tracking is an aspect of human-computer interaction still growing in popularity. Tracking human eye fixation points can help control user interfaces and eventually may help in the interface evaluation or optimization. Unfortunately professional eye-trackers are very expensive and thus hardly available for researchers and small companies. The paper presents very effective, exponentially smoothed, low cost, appearance based, improved gaze tracking method. The method achieves very high absolute precision (1 deg) at 20 fps, exploiting a simple HD web camera with reasonable environment restrictions. The paper describes results of experimental tests, both static on absolute gaze point estimation, and dynamic on gaze controlled path following.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duchowski, A.: Eye Tracking Methodology: Theory and Practice. Springer (2007)

    Google Scholar 

  2. Wojciechowski, A.: Wspomaganie interakcji czlowiek-komputer w środowiskach wirtualnych. Exit (2013)

    Google Scholar 

  3. Jacob, R.J.: What You Look Is What You Get: Eye Movement-Based Interaction Techniques. In: HF in CS: Conf. Proc. ACM CHI, pp. 11–18 (2000)

    Google Scholar 

  4. Starker, I., Bolt, R.A.: A Gaze-Responsive Self-Disclosing Display. Human Factors in Comp. Syst. In: ACM CHI Conf. Proc., pp. 3–9 (1990)

    Google Scholar 

  5. Tanriverdi, V., Jacob, R.J.K.: Interacting with eye movements in Virtual Environments. In: Human Factors in CS, ACM CHI Conf. Proc., pp. 265–272 (2000)

    Google Scholar 

  6. Kotze, P., et al.: Accessible computer interaction for people with disabilities: The case of quadriplegics. In: 6th Int. Conf. on Ent. Inf. Sys. (2004)

    Google Scholar 

  7. Majaranta, P., Raiha, K.: Twenty years of eye typing: Systems and Design Issues. In: Proc. of ETRA, pp. 15–22 (2002)

    Google Scholar 

  8. Hornof, A.J., Cavender, A.: EyeDraw: Enabling Children with Severe Motor Impairments to draw with their eyes. In: ACM Proc. of SIGCHI Conf. on HF in CS, pp. 161–170 (2005)

    Google Scholar 

  9. Santella, A., et al.: Gaze-Based Interaction for Semi-Automatic Photo Cropping. In: Proc. of the ACM SIGCHI Conf. on Human Factors in Comp. Syst., pp. 781–790 (2006)

    Google Scholar 

  10. Królak, A., Strumillo, P.: Eye-blink detection system for human-computer interaction. Univers. Access Inf. Soc. 10, 1–11 (2011)

    Article  Google Scholar 

  11. Wiak, S., Napieralski, P.: Visualization method of magnetic fields with dynamic particle systems. El. Rev. 88(7B), 56–59 (2012)

    Google Scholar 

  12. Glonek, G., Pietruszka, M.: Natural User Interfaces (NUI): Review. JACS 20(2), 27–46 (2012)

    Google Scholar 

  13. Lin, C.S., et al.: Design of a computer game using an eye-tracking device for eye’s activity rehabilitation. Optics and Lasers in Engineering 42(1), 91–108 (2004)

    Article  Google Scholar 

  14. Schneider, N., et al.: An open-source low-cost eye-tracking system for portable real-time and offline tracking. In: Proc. of the Conf. on Novel Gaze-Contr. App., pp. 1–4 (2011)

    Google Scholar 

  15. Ishiguro, Y., et al.: Aided eyes: eye activity sensing for daily life. In: Proc. of the 1st Augmented Human Int. Conf., ACM, vol. 25 (2010)

    Google Scholar 

  16. McMurrough, C.D., et al.: An eye tracking dataset for point of gaze detection. In: Proc. of ETRA, pp. 305–308 (2012)

    Google Scholar 

  17. Hansen, D.W., Ji, Q.: In the eye of the beholder: A survey of models for eyes and gaze. IEEE Trans. on Pattern Anal. and Mach. Int. 32(3), 478–500 (2010)

    Article  Google Scholar 

  18. Sibert, L.E., Jacob, R.J.: Evaluation of eye gaze interaction. In: Proc. of the ACM SIGCHI Conf. on HF in CS, pp. 281–288 (2000)

    Google Scholar 

  19. Kim, K.N., Ramakrishna, R.S.: Vision-Based Eye-Gaze Tracking for Human Computer Interface. In: Proc. of IEEE Int. Conf. on Sys. Man and Cyber., pp. 324–329 (1999)

    Google Scholar 

  20. Betke, M., Gips, J., Fleming, P.: The camera mouse: visual tracking of body features to provide computer access for people with severe disabilities. IEEE Neural Syst. and Rehab. Eng. 10(1), 1–10 (2002)

    Article  Google Scholar 

  21. Liu, T., Pang, C.: Eye-gaze Tracking Research Based on Image Processing. In: IEEE Congr. on Im. and Sign. Proc., pp. 176–180 (2008)

    Google Scholar 

  22. Kao, C.W., et al.: Eye Gaze Tracking Based on Pattern Voting Scheme for Mobile Device. In: Proc. of the IEEE Int. Conf. on IMCCC, pp. 337–340 (2011)

    Google Scholar 

  23. Magee, J.J., et al.: Eyekeys: A real-time vision interface based on gaze detection from a low-grade video camera. In: IEEE CVPR, pp. 159–159 (2004)

    Google Scholar 

  24. Yamazoe, H., et al.: Remote Gaze Estimation with a Single Camera Based on Facial-Feature Tracking without Special Calibration Actions. In: Proc. of ETRA, pp. 140–145 (2008)

    Google Scholar 

  25. Ishikawa, T., et al.: Passive Driver Gaze Tracking with Active Appearance Models. In: Proc. 11th World Cong. Int. Transp. Syst. (2004)

    Google Scholar 

  26. Lienhart, R., Maydt, J.: An Extended Set of Haar-like Features for Rapid Object Detection. In: IEEE ICIP 2002, vol. 1, pp. 900–903 (2002)

    Google Scholar 

  27. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: IEEE CS Conf. on CVPR, vol. 518, pp. 511–518 (2001)

    Google Scholar 

  28. LaViola Jr., J.J.: An Experiment Comparing Double Exponential Smoothing and Kalman Filter-Based Predictive Tracking Algorithms. VR 3, 283–284 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wojciechowski, A., Fornalczyk, K. (2014). Exponentially Smoothed Interactive Gaze Tracking Method. In: Chmielewski, L.J., Kozera, R., Shin, BS., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2014. Lecture Notes in Computer Science, vol 8671. Springer, Cham. https://doi.org/10.1007/978-3-319-11331-9_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11331-9_77

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11330-2

  • Online ISBN: 978-3-319-11331-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics