Skip to main content

Egomotion Estimation by Point-Cloud Back-Mapping

  • Conference paper
Book cover Computer Vision and Graphics (ICCVG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8671))

Included in the following conference series:

  • 2568 Accesses

Abstract

We consider egomotion estimation in the context of driver-assistance systems. In order to estimate the actual vehicle movement we only apply stereo cameras (and not any additional sensor). The paper proposes a visual odometry method by back-mapping clouds of reconstructed 3D points. Our method, called stereo-vision point-cloud back mapping method (sPBM), aims at minimizing 3D back-projection errors. We report about extensive experiments for sPBM. At this stage we consider accuracy as being the first priority; optimizing run-time performance will need to be considered later. Accurately estimated motion among subsequent frames of a recorded video sequence can then be used, for example, for 3D roadside reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badino, H., Franke, U., Rabe, C., Gehrig, S.: Stereo vision-based detection of moving objects under strong camera motion. In: Proc. Int. Conf. Computer Vision Theory Applications, pp. 25–28 (2006)

    Google Scholar 

  2. Badino, H., Kanade, T.: A head-wearable short-baseline stereo system for the simultaneous estimation of structure and motion. In: Proc. Conf. Machine Vision Applications (2011)

    Google Scholar 

  3. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Analysis Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  4. Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm. Intel Corporation, Microprocessor Research Labs, USA (2000)

    Google Scholar 

  5. Chetverikov, D., Svirko, D., Stepanov, D., Krsek, P.: The trimmed iterative closest point algorithm. In: Proc. ICPR, vol. 3, pp. 545–548 (2002)

    Google Scholar 

  6. Demirdjian, D., Darrell, T.: Motion estimation from disparity images. In: Proc. ICCV, vol. 1, pp. 213–218 (2001)

    Google Scholar 

  7. Hermann, S., Klette, R.: Iterative semi-global matching for robust driver assistance systems. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 465–478. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Klette, R.: Concise Computer Vision. Springer, London (2014)

    Book  MATH  Google Scholar 

  9. Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  10. Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars exploration rovers. J. Field Robotics 24, 169–186 (2007)

    Article  Google Scholar 

  11. Matthies, L., Shafer, S.: Error modeling in stereo navigation. IEEE J. Robotics Automation 3, 239–248 (1987)

    Article  Google Scholar 

  12. Matthies, L.: Dynamic stereo vision. Ph.D. dissertation, Carnegie Mellon University (1989)

    Google Scholar 

  13. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proc. ICVPR, pp. 652–659 (2004)

    Google Scholar 

  14. Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate motion field estimation from stereo image sequences in real-time. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 582–595. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proc. ICCV, pp. 2564–2571 (2011)

    Google Scholar 

  16. Scaramuzza, D., Fraundorfer, F.: Visual odometry tutorial. Robotics Automation Magazine 18(4), 80–92 (2011)

    Article  Google Scholar 

  17. Song, Z., Klette, R.: Robustness of point feature detection. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 91–99. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Zeng, Y., Klette, R.: Multi-run 3D streetside reconstruction from a vehicle. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 580–588. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Geng, H., Nicolescu, R., Klette, R. (2014). Egomotion Estimation by Point-Cloud Back-Mapping. In: Chmielewski, L.J., Kozera, R., Shin, BS., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2014. Lecture Notes in Computer Science, vol 8671. Springer, Cham. https://doi.org/10.1007/978-3-319-11331-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11331-9_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11330-2

  • Online ISBN: 978-3-319-11331-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics