Skip to main content

Plasmonic Nanostructures for Biomedical and Sensing Applications

  • Chapter
  • First Online:
Metallic Nanostructures

Abstract

Noble metal nanostructures are appealing for therapeutic, diagnostics, and sensing applications because of their unique optical properties and biocompatibility. The collective oscillation of electrons in a metal nanostructure resonates with particular wavelengths of light, generating the localized surface plasmon resonance (LSPR). The LSPR results in absorption and scattering of incoming photons. Absorption leads to photothermal generation of heat, photoluminescence, and quenching of fluorophores in close proximity. Scattering results in reflected photons and its amplification of the local electromagnetic field can enhance fluorescence, phosphorescence, and Raman scattering. These optical properties make plasmonic nanostructures ideal candidates for theranostic applications including light-induced thermal therapy, drug/gene delivery, and biomedical imaging. The use of plasmonic nanostructures for ex vivo detection of chemicals and biomolecules are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Nanotechnology Initiative Website, in http://www.nano.gov

  2. A.S. Thakor, J. Jokerst, C. Zavaleta, T.F. Massoud, S.S. Gambhir, Nano Lett 11, 4029–4036, (2011)

    Google Scholar 

  3. M.W. Whitehouse, Inflammopharmacology 16, 107–109, (2008)

    Google Scholar 

  4. C.L. Brown, G. Bushell, M.W. Whitehouse, D. Agrawal, S. Tupe, K. Paknikar, E.R. Tiekink, Gold Bull 40, 245–250, (2007)

    Google Scholar 

  5. J.W. Alexander, Surgical infections 10, 289–292, (2009)

    Google Scholar 

  6. M. Faraday, Philos Tr R Soc 147, 145–181, (1857)

    Google Scholar 

  7. K.A. Wilets, R.P.V. Duyne, Annu Rev Phys Chem 58, 267–297, (2007)

    Google Scholar 

  8. K. Aslan, J.R. Lakowicz, C.D. Geddes, Curr Opin Chem Biol 9, 538–544, (2005)

    Google Scholar 

  9. G. Mie, Ann Phys-Berlin 330, 377–445, (1908)

    Google Scholar 

  10. S. Link, Z.L. Wang, M.A. El-Sayed, J Phys Chem B 103, 3529–3533, (1999)

    Google Scholar 

  11. D.B. Pedersen, S. Wang, J Phys Chem C 111, 17493–17499, (2007)

    Google Scholar 

  12. W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Anal Chem 79, 4215–4221, (2007)

    Google Scholar 

  13. P.N. Njoki, I.I.S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, C.-J. Zhong, J Phys Chem C 111, 14664–14669, (2007)

    Google Scholar 

  14. R. Weissleder, Nat Biotechnol 19, 316–317, (2001)

    Google Scholar 

  15. A.M. Smith, M.C. Mancini, S. Nie, Nature nanotechnology 4, 710–711, (2009)

    Google Scholar 

  16. T. Pham, J.B. Jackson, N.J. Halas, T.R. Lee, Langmuir 18, 4915–4920, (2002)

    Google Scholar 

  17. N.R. Jana, L. Gearheart, C.J. Murphy, J Phys Chem B 105, 4065–4067, (2001)

    Google Scholar 

  18. B. Nikoobakht, M.A. El-Sayed, Chem Mater 15, 1957–1962, (2003)

    Google Scholar 

  19. S.E. Lohse, C.J. Murphy, Chem Mater 25, 1250–1261, (2013)

    Google Scholar 

  20. Y. Sun, Y. Xia, J Am Chem Soc 126, 3892–3901, (2004)

    Google Scholar 

  21. E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, Chem Soc Rev 41, 2740–2779, (2012)

    Google Scholar 

  22. S.E. Skrabalak, L. Au, X. Li, Y. Xia, Nat Protoc 2, 2182–2190, (2007)

    Google Scholar 

  23. J. Zhao, A.O. Pinchuk, J.M. McMahon, S. Li, L.K. Ausman, A.L. Atkinson, G.C. Schatz, Acc Chem Res 41, 1710–1720, (2008)

    Google Scholar 

  24. A.O. Govorov, H.H. Richardson, Nano Today 2, 30–38, (2007)

    Google Scholar 

  25. H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, J. Wang, Small 6, 2272–2280, (2010)

    Google Scholar 

  26. H.H. Richardson, M.T. Carlson, P.J. Tandler, P. Hernandez, A.O. Govorov, Nano Lett 9, 1139–1146, (2009)

    Google Scholar 

  27. M. Hu, G.V. Hartland, J Phys Chem B 106, 7029–7033, (2002)

    Google Scholar 

  28. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M.J. Welch, Y. Xia, Small 6, 811–817, (2010)

    Google Scholar 

  29. A. Mooradian, Phys Rev Lett 22, 185–187, (1969)

    Google Scholar 

  30. G.T. Boyd, Z.H. Yu, Y.R. Shen, Phys Rev B 33, 7923–7936, (1986)

    Google Scholar 

  31. R.A. Farrer, F.L. Butterfield, V.W. Chen, J.T. Fourkas, Nano Lett 5, 1139–1142, (2005)

    Google Scholar 

  32. M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed, Chem Phys Lett 317, 517–523, (2000)

    Google Scholar 

  33. E. Dulkeith, T. Niedereichholz, T.A. Klar, J. Feldmann, G. von Plessen, D.I. Gittins, K.S. Mayya, F. Caruso, Phys Rev B 70, 205424, (2004)

    Google Scholar 

  34. J. Zheng, P.R. Nicovich, R.M. Dickson, Annu Rev Phys Chem 58, 409, (2007)

    Google Scholar 

  35. J.W. Strutt, Philos Mag 41, 447–454, (1871)

    Google Scholar 

  36. J. Tyndall, Philos Mag 25, 200–206, (1863)

    Google Scholar 

  37. K. Aslan, J.R. Lakowicz, C.D. Geddes, Anal Biochem 330, 145–155, (2004)

    Google Scholar 

  38. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, J Chem Phys 116, 6755–6759, (2002)

    Google Scholar 

  39. C.J. Orendorff, T.K. Sau, C.J. Murphy, Small 2, 636–639, (2006)

    Google Scholar 

  40. G.J. Nusz, S.M. Marinakos, A.C. Curry, A. Dahlin, F. Höök, A. Wax, A. Chilkoti, Anal Chem 80, 984–989, (2008)

    Google Scholar 

  41. M.A. Mahmoud, M.A. El-Sayed, J Am Chem Soc 132, 12704–12710, (2010)

    Google Scholar 

  42. E. Hao, G.C. Schatz, J Chem Phys 120, 357–366, (2004)

    Google Scholar 

  43. L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Nano Lett 5, 2034–2038, (2005)

    Google Scholar 

  44. H. Guo, F. Ruan, L. Lu, J. Hu, J. Pan, Z. Yang, B. Ren, J Phys Chem C 113, 10459–10464, (2009)

    Google Scholar 

  45. L. Qin, S. Zou, C. Xue, A. Atkinson, G.C. Schatz, C.A. Mirkin, P Natl Acad Sci USA 103, 13300–13303, (2006)

    Google Scholar 

  46. S.S. Aćimović, M.P. Kreuzer, M.U. González, R. Quidant, ACS Nano 3, 1231–1237, (2009)

    Google Scholar 

  47. M.A. Mahmoud, J Phys Chem C 118, 10321–10328, (2014)

    Google Scholar 

  48. C.V. Raman, K.S. Krishnan, Nature 121, 501–502, (1928)

    Google Scholar 

  49. C.V. Raman, Indian J Phys 2, 387–398, (1928)

    Google Scholar 

  50. D.A. Skoog, D.M. West, T.A. Holler, Principles of Instrumental Analysis, 5th edn. ed., Harcourt Brace & Co, Philadelphia, 1998

    Google Scholar 

  51. R.L. Garrell, Anal Chem 61, 401A–411A, (1989)

    Google Scholar 

  52. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem Phys Lett 26, 163–166, (1974)

    Google Scholar 

  53. J. Kneipp, H. Kneipp, K. Kneippac, Chem Soc Rev 37, 1052–1060, (2008)

    Google Scholar 

  54. N. Valley, N. Greeneltch, R.P. Van Duyne, G.C. Schatz, J Phys Chem Lett 4, 2599–2604, (2013)

    Google Scholar 

  55. H. Xu, J. Aizpurua, M. Kall, P. Apell, Physical review E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 62, 4318–4324, (2000)

    Google Scholar 

  56. S.K. Saikin, Y. Chu, D. Rappoport, K.B. Crozier, A. Aspuru-Guzik, J Phys Chem Lett 1, 2740–2746, (2010)

    Google Scholar 

  57. B.J. Kennedy, S. Spaeth, M. Dickey, K.T. Carron, J Phys Chem B 103, 3640–3646, (1999)

    Google Scholar 

  58. X. Qian, J. Li, S. Nie, J Am Chem Soc 131, 7540–7541, (2009)

    Google Scholar 

  59. G.J. Kovacs, R.O. Loutfy, P.S. Vincett, C. Jennings, R. Aroca, Langmuir 2, 689–694, (1986)

    Google Scholar 

  60. J.A. Creighton, Surf Sci 124, 209–219, (1983)

    Google Scholar 

  61. H. Wei, H. Xu, Nanoscale 5, 10794–10805, (2013)

    Google Scholar 

  62. K.L. Wustholz, A.-I. Henry, J.M. McMahon, R.G. Freeman, N. Valley, M.E. Piotti, M.J. Natan, G.C. Schatz, R.P.V. Duyne, J Am Chem Soc 132, 10903–10910, (2010)

    Google Scholar 

  63. J. Hu, B. Zhao, W. Xu, Y. Fan, B. Li, Y. Ozaki, Langmuir 18, 6839–6844, (2002)

    Google Scholar 

  64. S. Nie, S.R. Emory, Science 275, 1102–1106, (1997)

    Google Scholar 

  65. E.C. Le Ru, P.G. Etchegoin, M. Meyer, J Chem Phys 125, 204701, (2006)

    Google Scholar 

  66. D.A. Weitz, S. Garoff, J.I. Gersten, A. Nitzan, J Chem Phys 78, 5324–5338, (1983)

    Google Scholar 

  67. P. Anger, P. Bharadwaj, L. Novotny, Phys Rev Lett (2005)

    Google Scholar 

  68. T.H. Tamican, F.D. Stefani, F.B. Segerink, N.F.v. Hulst, Nat Photonics 2, 234–237, (2008)

    Google Scholar 

  69. H. Metiu, P. Das, Annu Rev Phys Chem 35, 507–536, (1984)

    Google Scholar 

  70. F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Nano Lett 7, 469–501, (2007)

    Google Scholar 

  71. R. Bardhan, N.K. Grady, J.R. Cole, A. Joshi, N.J. Halas, ACS Nano 3, 744–752, (2009)

    Google Scholar 

  72. S. Vukovic, S. Corni, B. Mennucci, J Phys Chem C 113, 121–133, (2009)

    Google Scholar 

  73. S. Pan, Z. Wang, L.J. Rothberg, Mater Res Soc Symp Proc 818, null-null, (2004)

    Google Scholar 

  74. R. Toftegaard, J. Arnbjerg, H. Cong, H. Agheli, D.S. Sutherland, P.R. Ogilby, Pure Appl Chem 83, 885–898, (2011)

    Google Scholar 

  75. C. Schweitzer, R. Schmidt, Chem Rev 103, 1685–1758, (2003)

    Google Scholar 

  76. Y. Zhang, K. Aslan, M.J.R. Previte, C.D. Geddes, J Fluoresc 17, 345–349, (2007)

    Google Scholar 

  77. A. Srivatsan, S.V. Jenkins, M. Jeon, Z. Wu, C. Kim, J. Chen, R. Randey, Theranostics 4, 163–174, (2014)

    Google Scholar 

  78. J.C. Ostrowski, A. Mikhailovsky, D.A. Bussian, M.A. Summers, S.K. Buratto, G.C. Bazan, Adv Funct Mater 16, 1221–1227, (2006)

    Google Scholar 

  79. H. Mishra, B.L. Mali, J. Karolin, A.I. Dragan, C.D. Geddes, Phys Chem Chem Phys 15, 19538–19544, (2013)

    Google Scholar 

  80. Y. Zhang, K. Aslan, M.J.R. Previte, S.N. Malyn, C.D. Geddes, J Phys Chem B 110, 25108–25114, (2006)

    Google Scholar 

  81. M.J.R. Previte, K. Aslan, Y. Zhang, C.D. Geddes, J Phys Chem C 111, 6051–6059, (2007)

    Google Scholar 

  82. R.M. Clegg, Curr Opin Biotech 6, 103–110, (1995)

    Google Scholar 

  83. R. Chance, A. Prock, R. Silbey, Adv Chem Phys 37, 65, (1978)

    Google Scholar 

  84. C.S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N.O. Reich, G.F. Strouse, J Am Chem Soc 127, 3115–3119, (2005)

    Google Scholar 

  85. T.L. Jennings, M.P. Singh, G.F. Strouse, J Am Chem Soc 128, 5462–5467, (2006)

    Google Scholar 

  86. C.J. Breshike, R.A. Riskowski, G.F. Strouse, J Phys Chem C 117, 23942–23949, (2013)

    Google Scholar 

  87. M. Li, S.K. Cushing, Q. Wang, X. Shi, L.A. Hornak, Z. Hong, N. Wu, J Phys Chem Lett 2, 2125–2129, (2011)

    Google Scholar 

  88. M.P. Singh, T.L. Jennings, G.F. Strouse, J Phys Chem B 113, 552–558, (2009)

    Google Scholar 

  89. H. Grönbeck, A. Curioni, W. Andreoni, J Am Chem Soc 122, 3839–3842, (2000)

    Google Scholar 

  90. C.D. Bain, H.A. Biebuyck, G.M. Whitesides, Langmuir 5, 723–727, (1989)

    Google Scholar 

  91. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem Rev 105, 1103–1169, (2005)

    Google Scholar 

  92. C.D. Bain, G.M. Whitesides, J Am Chem Soc 111, 7164–7175, (1989)

    Google Scholar 

  93. C.D. Bain, J. Evall, G.M. Whitesides, J Am Chem Soc 111, 7155–7164, (1989)

    Google Scholar 

  94. J. Lipka, M. Semmler-Behnke, R.A. Sperling, A. Wenk, S. Takenaka, C. Schleh, T. Kissel, W.J. Parak, W.G. Kreyling, Biomaterials 31, 6574–6581, (2010)

    Google Scholar 

  95. S.D. Perrault, C. Walkey, T. Jennings, H.C. Fischer, W.C.W. Chan, Nano Lett 9, 1909–1915, (2009)

    Google Scholar 

  96. S. Nie, Nanomedicine 5, 523–528, (2010)

    Google Scholar 

  97. A.Z. Wang, R. Langer, O.C. Farokhzad, Annu Rev Med 63, 185–198, (2012)

    Google Scholar 

  98. S. Rana, A. Bajaj, R. Mout, V.M. Rotello, Adv Drug Deliver Rev 64, 200–216, (2012)

    Google Scholar 

  99. A. Verma, F. Stellacci, Small 6, 12–21, (2010)

    Google Scholar 

  100. C.H.J. Choi, C.A. Alabi, P. Webster, M.E. Davis, P Natl Acad Sci USA 107, 1235–1240, (2010)

    Google Scholar 

  101. B.D. Chithrani, W.C.W. Chan, Nano Lett 7, 1542–1550, (2007)

    Google Scholar 

  102. T.-G. Iversen, T. Skotland, K. Sandvig, Nano Today 6, 176–185, (2011)

    Google Scholar 

  103. S.E. McNeil, J Leukocyte Biol 78, 585–594, (2005)

    Google Scholar 

  104. A.E. Nel, L. Mädler, D. Velegol, T. Xia, E.M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat Mater 8, 543–557, (2009)

    Google Scholar 

  105. X. Chen, S.T.C. Wong, Introduction, in: X. Chen, S. Wong (Eds.) Cancer Theranostics, Elsevier Science, Oxford, 2014, pp. 327–346

    Google Scholar 

  106. J. Chen, Noble Metal Nanoparticle Platform, in: X. Chen, S. Wong (Eds.) Cancer Theranostics, Elsevier Science, Oxford, 2014, pp. 327–346

    Google Scholar 

  107. V.P. Zharov, D.O. Lapotko, IEEE J Sel Topics Quantum Electron 11, 733–751, (2005)

    Google Scholar 

  108. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, P Natl Acad Sci USA 100, 13549–13554, (2003)

    Google Scholar 

  109. B.V. Harmon, A.M. Corder, R.J. Collins, G.C. Gobé, J. Allen, D.J. Allan, J.F.R. Kerr, Int J Radiat Biol 58, 845–858, (1990)

    Google Scholar 

  110. J.M. Stern, J. Stanfield, W. Kabbani, J.-T. Hsieh, J.A. Cadeddu, J Urology 179, 748–753, (2008)

    Google Scholar 

  111. W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, H. Zhong, Biomaterials 32, 8555–8561, (2011)

    Google Scholar 

  112. L.R. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, J. West, P Natl Acad Sci USA 100, 13549–13554, (2003)

    Google Scholar 

  113. S. Lal, S.E. Clare, N.J. Halas, Acc Chem Res 41, 1842–1851, (2008)

    Google Scholar 

  114. X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, J Am Chem Soc 128, 2115–2120, (2006)

    Google Scholar 

  115. G. von Maltzahn, J.-H. Park, A. Agrawal, N.K. Bandaru, S.K. Das, M.J. Sailor, S.N. Bhatia, Cancer Res 69, 3892–3900, (2009)

    Google Scholar 

  116. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, X. Li, Nano Lett 7, 1318–1322, (2007)

    Google Scholar 

  117. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M.J. Welch, Y. Xia, Small 6, 811–817, (2010)

    Google Scholar 

  118. H. Yuan, A.M. Fales, T. Vo-Dinh, J Am Chem Soc 134, 11358–11361, (2012)

    Google Scholar 

  119. J. Shao, R.J. Griffin, E.I. Galanzha, J.-W. Kim, N. Koonce, J. Webber, T. Mustafa, A.S. Biris, D.A. Nedosekin, V.P. Zharov, Sci Rep 3, (2013)

    Google Scholar 

  120. V.P. Zharov, K.E. Mercer, E.N. Galitovskaya, M.S. Smeltzer, Biophysical journal 90, 619–627, (2006)

    Google Scholar 

  121. R.S. Norman, J.W. Stone, A. Gole, C.J. Murphy, T.L. Sabo-Attwood, Nano Lett 8, 302–306, (2008)

    Google Scholar 

  122. G.T. Hermanson, Bioconjugate Techniques, Elsevier Science, Oxford, 1996

    Google Scholar 

  123. H.C. Kolb, M.G. Finn, K.B. Sharpless, Angewandte Chemie (International ed in English) 40, 2004–2021, (2001)

    Google Scholar 

  124. S.S. Agasti, A. Chompoosor, C.-C. You, P. Ghosh, C.K. Kim, V.M. Rotello, J Am Chem Soc 131, 5728–5729, (2009)

    Google Scholar 

  125. W. Gao, J.M. Chan, O.C. Farokhzad, Mol Pharmaceut 7, 1913–1920, (2010)

    Google Scholar 

  126. R. Liu, Y. Zhang, X. Zhao, A. Agarwal, L.J. Mueller, P. Feng, J Am Chem Soc 132, 1500–1501, (2010)

    Google Scholar 

  127. X. Xia, M. Yang, L.K. Oetjen, Y. Zhang, Q. Li, J. Chen, Y. Xia, Nanoscale 3, 950–953, (2011)

    Google Scholar 

  128. K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Angew Chem Int Ed 49, 6288–6308, (2010)

    Google Scholar 

  129. P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Adv Drug Deliver Rev 60, 1307–1315, (2008)

    Google Scholar 

  130. S. Sershen, S. Westcott, N. Halas, J. West, J Bio Mater Res A 51, 293–298, (2000)

    Google Scholar 

  131. M.S. Yavuz, Y. Cheng, J. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K.H. Song, A.G. Schwartz, L.V. Wang, Y. Xia, Nat Mater 8, 935–939, (2009)

    Google Scholar 

  132. G.D. Moon, S.-W. Choi, X. Cai, W. Li, E.C. Cho, U. Jeong, L.V. Wang, Y. Xia, J Am Chem Soc 133, 4762–4765, (2011)

    Google Scholar 

  133. L. Tian, N. Gandra, S. Singamaneni, ACS Nano 7, 4252–4260, (2013)

    Google Scholar 

  134. A.S. Angelatos, B. Radt, F. Caruso, J Phys Chem B 109, 3071–3076, (2005)

    Google Scholar 

  135. J. Huang, K.S. Jackson, C.J. Murphy, Nano Lett 12, 2982–2987, (2012)

    Google Scholar 

  136. G. Wu, A. Mikhailovsky, H.A. Khant, C. Fu, W. Chiu, J.A. Zasadzinski, J Am Chem Soc 130, 8175–8177, (2008)

    Google Scholar 

  137. N. Lozano, W.T. Al-Jamal, A. Taruttis, N. Beziere, N.C. Burton, J. Van den Bossche, M. Mazza, E. Herzog, V. Ntziachristos, K. Kostarelos, J Am Chem Soc 134, 13256–13258, (2012)

    Google Scholar 

  138. K. Niikura, N. Iyo, Y. Matsuo, H. Mitomo, K. Ijiro, ACS Appl Mater Inter 5, 3900–3907, (2013)

    Google Scholar 

  139. S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, T. Niidome, Langmuir 27, 14621–14626, (2011)

    Google Scholar 

  140. N. Narband, S. Tubby, I.P. Parkin, J. Gil-Tomas, D. Ready, S.P. Nair, M. Wilson, Curr Nanosci 4, 409–414, (2008)

    Google Scholar 

  141. L. Vigderman, E.R. Zubarev, Adv Drug Deliver Rev 65, 663–676, (2013)

    Google Scholar 

  142. H. Gu, P.L. Ho, E. Tong, L. Wang, B. Xu, Nano Lett 3, 1261–1263, (2003)

    Google Scholar 

  143. A.N. Grace, K. Pandian, J Bionanoscience 1, 96–105, (2007)

    Google Scholar 

  144. A. Nirmala Grace, K. Pandian, Colloid Surface A 297, 63–70, (2007)

    Google Scholar 

  145. A.N. Brown, K. Smith, T.A. Samuels, J. Lu, S.O. Obare, M.E. Scott, Appl Environ Microbiol 78, 2768–2774, (2012)

    Google Scholar 

  146. Y. Zhao, Y. Tian, Y. Cui, W. Liu, W. Ma, X. Jiang, J Am Chem Soc 132, 12349–12356, (2010)

    Google Scholar 

  147. A. Rai, A. Prabhune, C.C. Perry, J Mater Chem 20, 6789–6798, (2010)

    Google Scholar 

  148. A. Elbakry, A. Zaky, R. Liebl, R. Rachel, A. Goepferich, M. Breunig, Nano Lett 9, 2059–2064, (2009)

    Google Scholar 

  149. A. Barhoumi, R. Huschka, R. Bardhan, M.W. Knight, N.J. Halas, Chem Phys Lett 482, 171–179, (2009)

    Google Scholar 

  150. N.L. Rosi, D.A. Giljohann, C.S. Thaxton, A.K.R. Lytton-Jean, M.S. Han, C.A. Mirkin, Science 312, 1027–1030, (2006)

    Google Scholar 

  151. P.S. Ghosh, C.-K. Kim, G. Han, N.S. Forbes, V.M. Rotello, ACS Nano 2, 2213–2218, (2008)

    Google Scholar 

  152. Y. Ding, Z. Jiang, K. Saha, C.S. Kim, S.T. Kim, R.F. Landis, V.M. Rotello, Mol Ther 22, 1075–1083, (2014)

    Google Scholar 

  153. A. Wijaya, S.B. Schaffer, I.G. Pallares, K. Hamad-Schifferli, ACS Nano 3, 80–86, (2008)

    Google Scholar 

  154. A.C. Bonoiu, S.D. Mahajan, H. Ding, I. Roy, K.-T. Yong, R. Kumar, R. Hu, E.J. Bergey, S.A. Schwartz, P.N. Prasad, P Natl Acad Sci USA (2009)

    Google Scholar 

  155. G.B. Braun, A. Pallaoro, G. Wu, D. Missirlis, J.A. Zasadzinski, M. Tirrell, N.O. Reich, ACS Nano 3, 2007–2015, (2009)

    Google Scholar 

  156. L.V. Wang, S. Hu, Science 335, 1458–1462, (2012)

    Google Scholar 

  157. Y. Wang, X. Xie, X. Wang, G. Ku, K.L. Gill, D.P. O’Neal, G. Stoica, L.V. Wang, Nano Lett 4, 1689–1692, (2004)

    Google Scholar 

  158. X. Yang, S.E. Skrabalak, Z.-Y. Li, Y. Xia, L.V. Wang, Nano Lett 7, 3798–3802, (2007)

    Google Scholar 

  159. E.C. Cho, C. Kim, F. Zhou, C.M. Cobley, K.H. Song, J. Chen, Z.-Y. Li, L.V. Wang, Y. Xia, J Phys Chem C 113, 9023–9028, (2009)

    Google Scholar 

  160. K.H. Song, C. Kim, C.M. Cobley, Y. Xia, L.V. Wang, Nano Lett 9, 183–188, (2008)

    Google Scholar 

  161. C. Kim, E.C. Cho, J. Chen, K.H. Song, L. Au, C. Favazza, Q. Zhang, C.M. Cobley, F. Gao, Y. Xia, L.V. Wang, ACS Nano 4, 4559–4564, (2010)

    Google Scholar 

  162. B. Wang, E. Yantsen, T. Larson, A.B. Karpiouk, S. Sethuraman, J.L. Su, K. Sokolov, S.Y. Emelianov, Nano Lett 9, 2212–2217, (2008)

    Google Scholar 

  163. K. Jansen, G. van Soest, A.F. van der Steen, Ultrasound Med Biol 40, 1037–1048, (2014)

    Google Scholar 

  164. M. Jeon, S. Jenkins, J. Oh, J. Kim, T. Peterson, J. Chen, C. Kim, Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers, in: Nanomedicine, in press, (2013)

    Google Scholar 

  165. C. Kim, C. Favazza, L.V. Wang, Chem Rev 110, 2756–2782, (2010)

    Google Scholar 

  166. M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, T. Kitamori, Anal Chem 73, 2112–2116, (2001)

    Google Scholar 

  167. D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, Science 297, 1160–1163, (2002)

    Google Scholar 

  168. V.P. Zharov, E.N. Galitovskaya, C. Johnson, T. Kelly, Laser Surg Med 37, 219–226, (2005)

    Google Scholar 

  169. V.P. Zharov, E.I. Galanzha, V.V. Tuchin, Photothermal imaging of moving cells in lymph and blood flow in vivo, in: A.A. Oraevsky, L.V. Wang (Eds.) Proc SPIE 5320, Photons Plus Ultrasound: Imaging and Sensing, San Jose, 2004, pp. 185–195

    Google Scholar 

  170. H. Jans, X. Liu, L. Austin, G. Maes, Q. Huo, Anal Chem 81, 9425–9432, (2009)

    Google Scholar 

  171. W. Eck, G. Craig, A. Sigdel, G. Ritter, L.J. Old, L. Tang, M.F. Brennan, P.J. Allen, M.D. Mason, ACS Nano 2, 2263–2272, (2008)

    Google Scholar 

  172. A. Wax, K. Sokolov, Laser Photonics Rev 3, 146–158, (2009)

    Google Scholar 

  173. J.C. Kah, K.W. Kho, C.G. Lee, C. James, R. Sheppard, Z.X. Shen, K.C. Soo, M.C. Olivo, Int J Nanomedicine 2, 785–798, (2007)

    Google Scholar 

  174. A.C. Curry, M. Crow, A. Wax, BIOMEDO 13, 014022-014022-014027, (2008)

    Google Scholar 

  175. M.J. Crow, G. Grant, J.M. Provenzale, A. Wax, AJR Am J Roentgenology 192, 1021–1028, (2009)

    Google Scholar 

  176. P.H. Tomlins, R. Wang, J Phys D Appl Phys 38, 2519, (2005)

    Google Scholar 

  177. A.M. Zysk, F.T. Nguyen, A.L. Oldenburg, D.L. Marks, S.A. Boppart, Bio Med 12, 051403, (2007)

    Google Scholar 

  178. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, Cancer Res 63, 1999–2004, (2003)

    Google Scholar 

  179. J. Chen, F. Saeki, B.J. Wiley, H. Cang, M.J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M.B. Kimmey, Li, Y. Xia, Nano Lett 5, 473–477, (2005)

    Google Scholar 

  180. C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, R. Drezek, Technol Cancer Res Treatment 3, 33–40, (2004)

    Google Scholar 

  181. A.L. Oldenburg, M.N. Hansen, A. Wei, S.A. Boppart, Plasmon-resonant gold nanorods provide spectroscopic OCT contrast in excised human breast tumors, in: S. Achilefu, D.J. Bornhop, R. Raghavachari (Eds.) Proc SPIE 6867, Molecular Probes for Biomedical Applications II, San Jose, 2008, pp. 68670E-68670E-68610

    Google Scholar 

  182. C.A. Puliafito, M.R. Hee, C.P. Lin, E. Reichel, J.S. Schuman, J.S. Duker, J.A. Izatt, E.A. Swanson, J.G. Fujimoto, Ophthalmology 102, 217–229, (1995)

    Google Scholar 

  183. A. de la Zerda, S. Prabhulkar, V.L. Perez, M. Ruggeri, A.S. Paranjape, F. Habte, S.S. Gambhir, R.M. Awdeh, Optical coherence contrast imaging using gold nanorods in living mice eyes, in: Clin Exp Ophthamol, accepted, (2014)

    Google Scholar 

  184. C.L. Haynes, A.D. McFarland, R.P.V. Duyne, Anal Chem 77, 338 A-346 A, (2005)

    Google Scholar 

  185. J. Xie, Q. Zhang, J.Y. Lee, D.I.C. Wang, ACS Nano 2, 2473–2480, (2008)

    Google Scholar 

  186. X. Qian, X.H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, Nat Biotechnol 26, 83–90, (2008)

    Google Scholar 

  187. C.L. Zavaleta, B.R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M.J. Natan, S.S. Gambhir, P Natl Acad Sci USA 106, 13511–13516, (2009)

    Google Scholar 

  188. J. Ando, K. Fujita, N.I. Smith, S. Kawata, Nano Lett 11, 5344–5348, (2011)

    Google Scholar 

  189. R. Carriles, D.N. Schafer, K.E. Sheetz, J.J. Field, R. Cisek, V. Barzda, A.W. Sylvester, J.A. Squier, Rev Sci Instrum 80, 081101, (2009)

    Google Scholar 

  190. K. Imura, T. Nagahara, H. Okamoto, J Phys Chem B 109, 13214–13220, (2005)

    Google Scholar 

  191. H. Wang, T.B. Huff, D.A. Zweifel, W. He, P.S. Low, A. Wei, J.-X. Cheng, P Natl Acad Sci USA 102, 15752–15756, (2005)

    Google Scholar 

  192. N.J. Durr, T. Larson, D.K. Smith, B.A. Korgel, K. Sokolov, A. Ben-Yakar, Nano Lett 7, 941–945, (2007)

    Google Scholar 

  193. L. Au, Q. Zhang, C.M. Cobley, M. Gidding, A.G. Schwartz, J. Chen, Y. Xia, ACS Nano 4, 35–42, (2009)

    Google Scholar 

  194. L. Tong, C.M. Cobley, J. Chen, Y. Xia, J.-X. Cheng, Angew Chem Int Ed 49, 3485–3488, (2010)

    Google Scholar 

  195. P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, G. Cerullo, Nano Lett 12, 2941–2947, (2012)

    Google Scholar 

  196. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Science 277, 1078–1081, (1997)

    Google Scholar 

  197. S.Y. Lin, S.W. Liu, C.M. Lin, C.H. Chen, Anal Chem 74, 330–335, (2002)

    Google Scholar 

  198. Y. Kim, R.C. Johnson, J.T. Hupp, Nano Lett 1, 165–167, (2001)

    Google Scholar 

  199. P.D. Beer, P.A. Gale, Angew Chem Int Ed 40, 486–516, (2001)

    Google Scholar 

  200. A. Laromaine, L. Koh, M. Murugesan, R.V. Ulijn, M.M. Stevens, J Am Chem Soc 129, 4156–4157, (2007)

    Google Scholar 

  201. J.S. Lee, M.S. Han, C.A. Mirkin, Angew Chem Int Ed 46, 4093–4096, (2007)

    Google Scholar 

  202. J. Liu, Y. Lu, J Am Chem Soc 125, 6642–6643, (2003)

    Google Scholar 

  203. A. Ogawa, Bioorg Med Chem Lett 21, 155–159, (2011)

    Google Scholar 

  204. H. Yang, H. Liu, H. Kang, W. Tan, J Am Chem Soc 130, 6320–6321, (2008)

    Google Scholar 

  205. C.L. Schofield, A.H. Haines, R.A. Field, D.A. Russell, Langmuir 22, 6707–6711, (2006)

    Google Scholar 

  206. C.-C. You, R.R. Arvizo, V.M. Rotello, Chem Commun 2905-2907, (2006)

    Google Scholar 

  207. S. Watanabe, M. Sonobe, M. Arai, Y. Tazume, T. Matsuo, T. Nakamura, K. Yoshida, Chem Commun 2866-2867, (2002)

    Google Scholar 

  208. P. Englebienne, A. Van Hoonacker, M. Verhas, Analyst 126, 1645–1651, (2001)

    Google Scholar 

  209. E. Fu, S.A. Ramsey, P. Yager, Anal Chim Acta 599, 118–123, (2007)

    Google Scholar 

  210. L.A. Lyon, M.D. Musick, M.J. Natan, Anal Chem 70, 5177–5183, (1998)

    Google Scholar 

  211. L. He, M.D. Musick, S.R. Nicewarner, F.G. Salinas, S.J. Benkovic, M.J. Natan, C.D. Keating, J Am Chem Soc 122, 9071–9077, (2000)

    Google Scholar 

  212. H. Li, X. Ma, J. Dong, W. Qian, Anal Chem 81, 8916–8922, (2009)

    Google Scholar 

  213. L. Rodriguez-Lorenzo, R. de la Rica, R.A. Alvarez-Puebla, L.M. Liz-Marzan, M.M. Stevens, Nat Mater 11, 604–607, (2012)

    Google Scholar 

  214. L. Shang, S. Dong, Nanotechnology 19, 095502, (2008)

    Google Scholar 

  215. J. Kneipp, H. Kneipp, B. Wittig, K. Kneipp, J Phys Chem C 114, 7421–7426, (2010)

    Google Scholar 

  216. P.C. Lee, D. Meisel, J Phys Chem 86, 3391–3395, (1982)

    Google Scholar 

  217. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem Rev 99, 2957–2976, (1999)

    Google Scholar 

  218. D. Graham, B.J. Mallinder, W.E. Smith, Angew Chem Int Ed 39, 1061–1063, (2000)

    Google Scholar 

  219. Y.C. Cao, R. Jin, C.A. Mirkin, Science 297, 1536–1540, (2002)

    Google Scholar 

  220. L. Sun, C. Yu, J. Irudayaraj, Anal Chem 79, 3981–3988, (2007)

    Google Scholar 

  221. X.X. Han, L. Chen, W. Ji, Y. Xie, B. Zhao, Y. Ozaki, Small 7, 316–320, (2011)

    Google Scholar 

  222. D.S. Grubisha, R.J. Lipert, H.Y. Park, J. Driskell, M.D. Porter, Anal Chem 75, 5936–5943, (2003)

    Google Scholar 

  223. B. Dubertret, M. Calame, A.J. Libchaber, Nat Biotechnol 2001, (2001)

    Google Scholar 

  224. E. Oh, M.-Y. Hong, D. Lee, S.-H. Nam, H.C. Yoon, H.-S. Kim, J Am Chem Soc 127, 3270–3271, (2005)

    Google Scholar 

  225. D.S. Seferos, D.A. Giljohann, H.D. Hill, A.E. Prigodich, C.A. Mirkin, J Am Chem Soc 129, 15477–15479, (2007)

    Google Scholar 

  226. M. De, S. Rana, H. Akpinar, O.R. Miranda, R.R. Arvizo, U.H.F. Bunz, V.M. Rotello, Nat Chem 1, 461–465, (2009)

    Google Scholar 

  227. M. De, C.-C. You, S. Srivastava, V.M. Rotello, J Am Chem Soc 129, 10747–10753, (2007)

    Google Scholar 

Download references

Acknowledgment

The author acknowledges the support from NIH/NCI R03 CA182052–01, NIH P30 GM103450, Arkansas Biosciences Institute, and startup from the University of Arkansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jenkins, S., Muldoon, T., Chen, J. (2015). Plasmonic Nanostructures for Biomedical and Sensing Applications. In: Xiong, Y., Lu, X. (eds) Metallic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-11304-3_5

Download citation

Publish with us

Policies and ethics