Emulating Cellular Automata in Chemical Reaction-Diffusion Networks

  • Dominic Scalise
  • Rebecca Schulman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8727)


Chemical reactions and diffusion can produce a wide variety of static or transient spatial patterns in the concentrations of chemical species. Little is known, however, about what dynamical patterns of concentrations can be reliably programmed into such reaction-diffusion systems. Here we show that given simple, periodic inputs, chemical reactions and diffusion can reliably emulate the dynamics of a deterministic cellular automaton, and can therefore be programmed to produce a wide range of complex, discrete dynamics. We describe a modular reaction-diffusion program that orchestrates each of the fundamental operations of a cellular automaton: storage of cell state, communication between neighboring cells, and calculation of cells’ subsequent states. Starting from a pattern that encodes an automaton’s initial state, the concentration of a “state” species evolves in space and time according to the automaton’s specified rules. To show that the reaction-diffusion program we describe produces the target dynamics, we simulate the reaction-diffusion network for two simple 1-dimensional cellular automata using coupled partial differential equations. Reaction-diffusion based cellular automata could potentially be built in vitro using networks of DNA molecules that interact via branch migration processes and could in principle perform universal computation, storing their state as a pattern of molecular concentrations, or deliver spatiotemporal instructions encoded in concentrations to direct the behavior of intelligent materials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edn. Springer, New York (2003)Google Scholar
  2. 2.
    Greenfield, D., et al.: Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol. 7 (2009)Google Scholar
  3. 3.
    Baker, M.D., Wolanin, P.M., Stock, J.B.: Signal transduction in bacterial chemotaxis. Bioessay 28(1), 9–22 (2006)CrossRefGoogle Scholar
  4. 4.
    Gács, P.: Reliable cellular automata with self-organization. J. Stat. Phys. 103, 45–267 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Gács, P., Reif, J.: A simple three-dimensional real-time reliable cellular array. J. Comput. Syst. Sci. 36, 125–147 (1988)CrossRefMATHGoogle Scholar
  6. 6.
    Cook, M.: Universality in elementary cellular automata. Complex Systems 15, 1–40 (2004)MATHMathSciNetGoogle Scholar
  7. 7.
    Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    von Neumann, J.A.W., Burks, E.: The Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)Google Scholar
  9. 9.
    Codd, E.F.: Cellular automata. Academic Press, Inc., San Diego (1968)MATHGoogle Scholar
  10. 10.
    Langton, C.G.: Self-reproduction in cellular automata. Physica D 10(1), 135–144 (1984)CrossRefGoogle Scholar
  11. 11.
    Sayama, H.: A new structurally dissolvable self-reproducing loop evolving in a simple cellular automata space. Artificial Life 5(4), 343–365 (1999)CrossRefGoogle Scholar
  12. 12.
    Turing, A.M.: The chemical basis of morphogenesis. Phil. T. Roy. Soc. B 237, 37–72 (1952)CrossRefGoogle Scholar
  13. 13.
    Tóth, Á., Showalter, K.: Logic gates in excitable media. The Journal of Chemical Physics 103, 2058–2066 (1995)CrossRefGoogle Scholar
  14. 14.
    Steinbock, O., Kettunen, P., Showalter, K.: Chemical wave logic gates. The Journal of Physical Chemistry 100, 18970–18975 (1996)CrossRefGoogle Scholar
  15. 15.
    Bánsági, T., Vanag, V.K., Epstein, I.R.: Tomography of reaction-diffusion microemulsions reveals three-dimensional Turing patterns. Science 331, 1309–1312 (2011)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. P. Natl. Acad. Sci. 107, 5393–5398 (2010)CrossRefGoogle Scholar
  17. 17.
    Chen, Y., et al.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)CrossRefGoogle Scholar
  18. 18.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement. Science 332, 1196–1201 (2011)CrossRefGoogle Scholar
  19. 19.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)CrossRefGoogle Scholar
  20. 20.
    Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 8, 1281–1297 (2011)CrossRefGoogle Scholar
  21. 21.
    Smith, D.E., Perkins, T.T., Chu, S.: Dynamical scaling of DNA diffusion coefficients. Macromolecules 29, 1372–1373 (1996)CrossRefGoogle Scholar
  22. 22.
    Allen, P.B., Chen, X., Ellington, A.D.: Spatial control of DNA reaction networks by DNA sequence. Molecules 17, 13390–13402 (2012)CrossRefGoogle Scholar
  23. 23.
    Chirieleison, S.M., Allen, P.B., Simpson, Z.B., Ellington, A.D., Chen, X.: Pattern transformation with DNA circuits. Nature Chem. 5, 1000–1005 (2013)CrossRefGoogle Scholar
  24. 24.
    Scalise, D., Schulman, R.: Designing modular reaction-diffusion programs for complex pattern formation. Technology 2, 55–66 (2014)CrossRefGoogle Scholar
  25. 25.
    Ruiza, S.A., Chen, C.S.: Microcontact printing: A tool to pattern. Soft Matter 3, 168–177 (2007)CrossRefGoogle Scholar
  26. 26.
    Du, Y., Lo, E., Ali, S., Khademhosseini, A.: Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. P. Natl. Acad. Sci. 105, 9522–9527 (2008)CrossRefGoogle Scholar
  27. 27.
    Nehaniv, C.L.: Asynchronous automata networks can emulate any synchronous automata network. International Journal of Algebra and Computation 14, 719–739 (2004)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7, 615–633 (2008)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Peterson, J.L.: Petri net theory and the modeling of systems. Prentice Hall, Englewood Cliffs (1981)Google Scholar
  31. 31.
    Lindenmayer, A.: Mathematical models for cellular interactions in development I. filaments with one-sided inputs. J. Theor. Biol. 18, 280–299 (1968)CrossRefGoogle Scholar
  32. 32.
    Wu, A., Rosenfeld, A.: Cellular graph automata. I. basic concepts, graph property measurement, closure properties. Information and Control 42, 305–329 (1979)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of self-reproduction. Physica D: Nonlinear Phenomena 171, 197–210 (2002)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)CrossRefGoogle Scholar
  35. 35.
    Lukacs, G.L., Haggie, P., Seksek, O., Lechardeur, D., Verkman, N.F.A.: Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. 275 (2000)Google Scholar
  36. 36.
    Stellwagen, E., Lu, Y., Stellwagen, N.: Unified description of electrophoresis and diffusion for DNA and other polyions. Biochemistry 42 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dominic Scalise
    • 1
  • Rebecca Schulman
    • 1
    • 2
  1. 1.Chemical and Biomolecular EngineeringJohns Hopkins UniversityUSA
  2. 2.Computer ScienceJohns Hopkins UniversityUSA

Personalised recommendations