Skip to main content

Fuzzy Logic-Based Adaptive Communication Management on Wireless Network

  • Conference paper
  • 1615 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8733)

Abstract

This paper presents a fuzzy logic-based adaptive communication management on a wireless network. A combination of both wireless network and handheld device is most widely used in the world today. The wireless network depends on the radio signal to communicate with the device. And the handheld device is the mobile node, which is difficult to determine the certain location. These unstable features have a negative influence on the communication QoS (quality of service). Therefore, we adopt the fuzzy logic to improve the communication efficiency. The access point (AP) may evaluate the communication state with the fuzzy logic. Through this, the relay station utilizes the evaluation result to handle the communication throughput. The simulation demonstrates the efficiency of our proposed model.

Keywords

  • Fuzzy Logic
  • Rule-based Inference
  • Adaptive Queue Management
  • Wireless Network

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-11289-3_5
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-11289-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raychaudhuri, D., Mandayam, N.B.: Frontiers of wireless and mobile communications. Proceedings of the IEEE 100(4), 824–840 (2012)

    CrossRef  Google Scholar 

  2. Avestimehr, A.S., Diggavi, S.N., Tse, D.N.: Wireless network information flow: A deterministic approach. IEEE Transactions on Information Theory 57(4), 1872–1905 (2011)

    CrossRef  MathSciNet  Google Scholar 

  3. Shin, K., Kim, J., Choi, S.B.: Loss recovery scheme for TCP using MAC MIB over wireless access networks. IEEE Communications Letters 15(10), 1059–1061 (2011)

    CrossRef  Google Scholar 

  4. Maisuria, J.V., Patel, R.M.: Overview of Techniques for Improving QoS of TCP over Wireless Links. In: 2012 International Conference on Communication Systems and Network Technologies (CSNT), pp. 366–370. IEEE (2012)

    Google Scholar 

  5. Nguyen, T.H., Park, M., Youn, Y., Jung, S.: An improvement of TCP performance over wireless networks. In: 2013 Fifth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 214–219. IEEE (2013)

    Google Scholar 

  6. Tiyyagura, S., Nutangi, R., Reddy, P.C.: An improved snoop for TCP Reno and TCP sack in wired-cum-wireless networks. Ind. J. Comput. Sci. Eng. 2, 455–460 (2011)

    Google Scholar 

  7. Rajasekaran, S., Pai, G.V.: Neural networks, Fuzzy logic and Genetic algorithms. PHI Learning Private Limited (2011)

    Google Scholar 

  8. Lee, C.C.: Fuzzy Logic in Control Systems: Fuzzy Logic Controller. IEEE Trans. Systems, Man and Cybernetics 20, 404–435 (1990)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Zeigler, B., Moon, Y., Kim, D., Ball, G.: The DEVS environment for high performance modeling and simulation, Computational Science and Engineering. IEEE CS&E, 61–71 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kim, T., Han, Y., Kim, J., Lee, J. (2014). Fuzzy Logic-Based Adaptive Communication Management on Wireless Network. In: Hwang, D., Jung, J.J., Nguyen, NT. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2014. Lecture Notes in Computer Science(), vol 8733. Springer, Cham. https://doi.org/10.1007/978-3-319-11289-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11289-3_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11288-6

  • Online ISBN: 978-3-319-11289-3

  • eBook Packages: Computer ScienceComputer Science (R0)