Skip to main content

Fuzzy Splicing Systems

  • Conference paper
  • 1604 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8733)

Abstract

In this paper we introduce a new variant of splicing systems, called fuzzy splicing systems, and establish some basic properties of language families generated by this type of splicing systems. We study the “fuzzy effect” on splicing operations, and show that the “fuzzification” of splicing systems can increase and decrease the computational power of splicing systems with finite components with respect to fuzzy operations and cut-points chosen for threshold languages.

Keywords

  • Fuzzy Membership
  • Regular Language
  • Threshold Mode
  • Discrete Apply Mathematic
  • Formal Language Theory

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-11289-3_3
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-11289-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    CrossRef  Google Scholar 

  2. Boneh, D., Dunworth, C., Lipton, R., Sgall, J.: On the computational power of DNA. Discrete Applied Mathematics. Special Issue on Computational Molecular Biology 71, 79–94 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Lipton, R.: Using DNA to solve NP–complete problems. Science 268, 542–545 (1995)

    CrossRef  Google Scholar 

  4. Head, T.: Formal language theory and DNA: An analysis of the generative capacity of specific recombination behaviors. Bull. Math. Biology 49, 737–759 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Pixton, D.: Regularity of splicing languages. Discrete Applied Mathematics 69, 101–124 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Pǎun, G., Rozenberg, G., Salomaa, A.: DNA computing. New computing paradigms. Springer-Verlag (1998)

    Google Scholar 

  7. Mordeson, J., Malik, D.: Fuzzy Automata and Languages. Theory and Applications. Chapman & Hall/CRC (2002)

    Google Scholar 

  8. Dassow, J., Pǎun, G.: Regulated rewriting in formal language theory. Springer-Verlag, Berlin (1989)

    Google Scholar 

  9. Rozenberg, G., Salomaa, A.: Handbook of formal languages, vol. 1-3. Springer, Heidelberg (1997)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Karimi, F., Turaev, S., Sarmin, N.H., Fong, W.H. (2014). Fuzzy Splicing Systems. In: Hwang, D., Jung, J.J., Nguyen, NT. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2014. Lecture Notes in Computer Science(), vol 8733. Springer, Cham. https://doi.org/10.1007/978-3-319-11289-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11289-3_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11288-6

  • Online ISBN: 978-3-319-11289-3

  • eBook Packages: Computer ScienceComputer Science (R0)