Skip to main content

Building Educational and Marketing Models of Diffusion in Knowledge and Opinion Transmission

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8733)

Abstract

Group communication and diffusion of information and opinion are important but unresearched aspect of collective intelligence. In this paper a number of hypotheses are proposed in discussed. Each hypothesis proven would be a considerable step towards creating a complete and coherent model of group communication, that could be used both in computer and human sciences. This paper also discusses some methodology that may be used by researchers to determine the hypotheses.

Keywords

  • Social Capital
  • Social Network Analysis
  • Market Model
  • Collective Intelligence
  • Consensus Problem

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-11289-3_17
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-11289-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batorski, D.: Analiza Sieci Spoecznych Pajek, Instytut Socjologii UW (2005)

    Google Scholar 

  2. Blau, P.: Structural Contexts of Opportunities. The University of Chicago Press, Chicago (1994)

    Google Scholar 

  3. de Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek. Cambridge University Press, Cambridge (2005)

    CrossRef  Google Scholar 

  4. Hanneman, R., Riddle, M.: Introduction to Social Network Methods. Online textbook. Department of Sociology, University of California (2005)

    Google Scholar 

  5. Knoke, D., Kuklinski, J.: Network analysis. Quantitative Applications in the Social Sciences, Sage University Paper (1982)

    Google Scholar 

  6. McMorris, F.R., Mulder, H.M., Powers, R.C.: The median function on median graphs and semilattices. Discrete Applied Mathematics 101, 221–230 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Nguyen, N.T.: Consensus systems for conflict solving in distributed systems. Journal of Information Sciences 147(1-4), 91–122 (2002)

    CrossRef  MATH  Google Scholar 

  8. Nguyen, N.T.: Metody wyboru consensusu i ich zastosowania w rozwizywaniu konfliktw w systemach rozproszonych. Monograph, Oficyna Wydawnicza PWr (2002)

    Google Scholar 

  9. Pogonowska, B.: Kapita spoeczny prba rekonstrukcji kategorii pojciowej. In: Kapita spoeczny aspekty teoretyczne i praktyczne, Januszek H. (ed.), Wyd. Akademii Ekonomicznej w Poznaniu, Pozna (2004)

    Google Scholar 

  10. Putnam, R.D.: Bowling Alone: Americas Declining Social Capital (1995)

    Google Scholar 

  11. Sierociska, K.: Kapita spoeczny. Definiowanie, pomiary, typy. Economic Studies no. 1 (LXVIII), 70–71 (2011)

    Google Scholar 

  12. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Maleszka, M., Nguyen, N.T., Urbanek, A., Wawrzak-Chodaczek, M. (2014). Building Educational and Marketing Models of Diffusion in Knowledge and Opinion Transmission. In: Hwang, D., Jung, J.J., Nguyen, NT. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2014. Lecture Notes in Computer Science(), vol 8733. Springer, Cham. https://doi.org/10.1007/978-3-319-11289-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11289-3_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11288-6

  • Online ISBN: 978-3-319-11289-3

  • eBook Packages: Computer ScienceComputer Science (R0)