Skip to main content

Understanding Online Social Networks’ Users – A Twitter Approach

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8733)

Abstract

Twitter messages, also known as tweets, are increasingly used by marketers worldwide to determine consumer sentiments towards brands, products or events. Currently, most existing approaches used for social networks sentiment analysis only extract simple feedbacks in terms of positive and negative perception. In this paper, TweetOntoSense is proposed - a semantic based approach that uses ontologies in order to infer the actual user’s emotions. The extracted sentiments are described using a WordNet enriched emotional categories ontology. Thus, feelings such as happiness, affection, surprise, anger, sadness, etc. are put forth. Moreover, compared to existing approaches, TweetOntoSense also takes into consideration the fact that a single tweet message might express several, rather than a single emotion. A case study on Twitter is performed, also showing this approach’s practical applicability.

Keywords

  • sentiment analysis
  • twitter
  • ontology
  • text-mining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-11289-3_15
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-11289-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pak, A., Paroubek, P.: Twitter as a Corpus for Sentiment Analysis and Opinion Mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation, pp. 1320–1326 (2010)

    Google Scholar 

  2. He, Y., Zhou, D.: Self-training from labeled features for sentiment analysis. Inf. Process. Manag. 47, 606–616 (2011)

    CrossRef  MathSciNet  Google Scholar 

  3. Prabowo, R., Thelwall, M.: Sentiment analysis: A combined approach. J. Informetr. 3, 143–157 (2009)

    CrossRef  Google Scholar 

  4. Hastings, J., Ceusters, W., Smith, B., Mulligan, K.: Dispositions and processes in the emotion ontology. In: Proceedings of the 2nd International Conference on Biomedical Ontology (2011)

    Google Scholar 

  5. Ghiassi, M., Skinner, J., Zimbra, D.: Twitter brand sentiment analysis: A hybrid system us-ing n-gram analysis and dynamic artificial neural network. Expert Syst. Appl. 40, 6266–6282 (2013)

    CrossRef  Google Scholar 

  6. Mostafa, M.M.: More than words: Social networks’ text mining for consumer brand sentiments. Expert Syst. Appl. 40, 4241–4251 (2013)

    CrossRef  Google Scholar 

  7. Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment Strength Detection for the Social Web 63, 163–173 (2012)

    Google Scholar 

  8. Kontopoulos, E., Berberidis, C., Dergiades, T., Bassiliades, N.: Ontology-based sentiment analysis of twitter posts. Expert Syst. Appl. 40, 4065–4074 (2013)

    CrossRef  Google Scholar 

  9. Delcea, C.: Not even White. Definitively Grey Economic Systems. The Journal of Grey System 26(1), 11–25 (2014)

    Google Scholar 

  10. Scarlat, E., Chirită, N., Bradea, I.A.: Grey Knowledge and Intelligent Systems Evolution. In: 11th Conference on Economic Informatics, pp. 47–52 (2012)

    Google Scholar 

  11. Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: The good the bad and the omg! In: ICWSM. pp. 538–541 (2011)

    Google Scholar 

  12. Francisco, V., Hervás, R., Peinado, F., Gervás, P.: EmoTales: creating a corpus of folk tales with emotional annotations. Language Resources and Evaluation 46(3), 341–381 (2012)

    CrossRef  Google Scholar 

  13. Baldoni, M., Baroglio, C., Patti, V., Rena, P.: From tags to emotions: Ontology-driven sentiment analysis in the social semantic web 6, 41–54 (2012)

    Google Scholar 

  14. Montejo-Ráez, A., Martínez-Cámara, E., Martín-Valdivia, M.T., Ureña-López, L.A.: Ranked WordNet graph for Sentiment Polarity Classification in Twitter. Comput. Speech Lang. 28, 93–107 (2014)

    CrossRef  Google Scholar 

  15. Go, A., Bhayani, R., Huang, L.: Twitter Sentiment Classification using Distant Supervision

    Google Scholar 

  16. Petrović, S., Osborne, M., Lavrenko, V.: The Edinburgh Twitter Corpus. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Linguistics in a World of Social Media, pp. 25–26 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Delcea, C., Cotfas, LA., Paun, R. (2014). Understanding Online Social Networks’ Users – A Twitter Approach. In: Hwang, D., Jung, J.J., Nguyen, NT. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2014. Lecture Notes in Computer Science(), vol 8733. Springer, Cham. https://doi.org/10.1007/978-3-319-11289-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11289-3_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11288-6

  • Online ISBN: 978-3-319-11289-3

  • eBook Packages: Computer ScienceComputer Science (R0)