Skip to main content

A Preferences Based Approach for Better Comprehension of User Information Needs

  • Conference paper
  • 1608 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8733)

Abstract

Within Mobile information retrieval research, context information provides an important basis for identifying and understanding user’s information needs. Therefore search process can take advantage of contextual information to enhance the query and adapt search results to user’s current context. However, the challenge is how to define the best contextual information to be integrated in search process. In this paper, our intention is to build a model that can identify which contextual dimensions strongly influence the outcome of the retrieval process and should therefore be in the user’s focus. In order to achieve these objectives, we create a new query language model based on user’s pereferences. We extend this model in order to define a relevance measure for each contextual dimension, which allow to automatically classify each dimension. This latter is used to compute the degree of change in result lists for the same query enhanced by different dimensions. Our experiments show that our measure can analyze the real user’s context of up to 8000 of dimensions. We also show experimentally the quality of the set of contextual dimensions proposed, and the interest of the measure to understand mobile user’s needs and to enhance his query.

Keywords

  • Mobile search
  • User’s context
  • Relevance
  • User’s Preferences

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-11289-3_10
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-11289-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aréchiga, D., Vegas, J., Redondo, P.F.: Ontology Supported Personalized Search for Mobile Devices. In: ONTOSE 2010. LNCS, pp. 1–12. Springer, Heidelberg (2009)

    Google Scholar 

  2. Bouidghaghen, O., Tamine, L., Boughanem, M.: Context-Aware User’s Interests for Personalizing Mobile Search. In: Proc. 12th IEEE International Conference on Mobile Data Management, Sweden, June 6-9, pp. 129–134. IEEE Computer Society (2011)

    Google Scholar 

  3. Chirita, P., Firan, C., Nejdl, W.: Summarizing local context to personalize global Web search. In: Proc. of CIKM International Conference on Information and Knowledge Management, Arlington, Virginia, USA, November 6-11, pp. 287–296. ACM (2006)

    Google Scholar 

  4. Coppola, P., Della Mea, V., Di Gaspero, L., Menegon, D., Mischis, D., Mizzaro, S., Scagnetto, I., Vassena, L.: The Context-Aware Browser. J. IEEE Intelligent Systems 25(1), 38–47 (2010)

    CrossRef  Google Scholar 

  5. Jones, R.: Temporal profiles of queries. J. ACM Transactions on Information Systems (TOIS) 25((3)14) (July 2007)

    Google Scholar 

  6. Tsai, F.S., Etoh, M., Xie, X., Lee, W.C., Yang, Q.: Introduction to Mobile Information Retrieval. J. IEEE Intelligent Systems 25(1), 11–15 (2010)

    CrossRef  Google Scholar 

  7. Kessler, C.: What is the Difference? A Cognitive Dissimilarity Measure for Information Retrieval Result Sets. J. Knowledge and Information Systems 30(2), 319–340 (2012)

    CrossRef  MathSciNet  Google Scholar 

  8. Lavrenko, V., Croft, W.B.: Relevance-based language models. In: Proc. of SIGIR 2001 the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New Orleans, Louisiana, USA, September 9-13, pp. 120–127. ACM (2001)

    Google Scholar 

  9. Arias, M., Cantera, J.M., de la Fuente, P., Llamas, C., Vegas, J.: Knowledge-Based Thesaurus Recommender System in Mobile Web Search. In: Proc. of CERI 1st Spanish Conference on Information Retrieval, Madrid, Spain, June 15-16 (2010)

    Google Scholar 

  10. Ponte, J.M., Croft, W.B.: A language modeling approach to Information Retrieval, in. In: Proc. the 21st. International ACM SIGIR Conference on Research and Development in Information Retrieval, Melbourne, Australia, pp. 275–281. ACM (1998)

    Google Scholar 

  11. Stefanidis, K., Pitoura, E., Vassiliadis, P.: Adding Context to Preferences. In: Proc. of ICDE IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, April 15-20, pp. 846–855 (2007)

    Google Scholar 

  12. Gravano, L., Hatzivassiloglou, V., Lichtenstein, R.: Categorizing web queries according to geographical locality. In: Proc. of CIKM 2003 the Twelfth International Conference on Information and Knowledge Management, New Orleans, Louisiana, USA, November 2-8, pp. 325–333. ACM (2003)

    Google Scholar 

  13. Yau, S., Liu, H., Huang, D., Yao, Y.: Situation-aware personalized Information Retrieval for mobile internet. In: Proc. of COMPSAC 27th Annual International Computer Software and Applications Conference, Dallas, TX, USA, November 3-6, pp. 639–644. IEEE Computer Society (2003)

    Google Scholar 

  14. Welch, M., Cho, J.: Automatically identifying localizable queries. In: Proc. of 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, July 20-24, pp. 1185–1186. ACM (2008)

    Google Scholar 

  15. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In: Proc. the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, August 11-15, pp. 299–306. ACM (2002)

    Google Scholar 

  16. Vadrevu, S., Zhang, Y., Tseng, B., Sun, G., Li, X.: Identifying regional sensitive queries in web search. In: Proc. of WWW 2008 the 17th International Conference on World Wide Web, Beijing, China, April 21-25, pp. 1185–1186 (2008)

    Google Scholar 

  17. Poslad, S., Laamanen, H., Malaka, R., Nick, A., Buckle, P.: Zipf.A. Crumpet, Creation of user-friendly mobile services personalised for tourism. In: Proc. of the Second International Conference on 3G Mobile Communication Technologies, Conf. Publ. No. 477, March 26-28, pp. 28–32. IEEE Computer Society, London (2001)

    Google Scholar 

  18. Croft, W.B., Lafferty, J.: Language Modeling for Information Retrieval. J. Kluwer Academic Publishers (2003)

    Google Scholar 

  19. Jelinek, F., Mercer, R.L.: Interpolated estimation of markov source parameters from sparse data. In: Proc. of the Workshop on Pattern Recognition in Practice, pp. 381–397. North-Holland, Amsterdam (1980)

    Google Scholar 

  20. Ahn, J., Brusilovsky, J., He, D., Grady, J., Li, Q.: Personalized Web Exploration with Task Modles. In: Proc. of WWW 2008 the 17th international conference on World Wide Web, Beijing, China, April 21-25, pp. 1–10 (2008)

    Google Scholar 

  21. Pitkow, J., Schutze, H., Cass, T., Cooley, R., Turnbull, D., Edmonds, A., Adar, E., Breuel, T.: Personalized search. Communications of the ACM Journal 45(9), 50–55 (2002)

    Google Scholar 

  22. Ingwersen, P., Jarvelin, K.: The Turn: Integration of Information Seeking and Retrieval in Context. J. Springer-Verlag Eds, vol. 18, p. 448 (2005)

    Google Scholar 

  23. Hollan, J.D., Sohn, T., Li, K.A., Griswold, W.G.: A Diary Study of Mobile Information Needs. In: Proc. of SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, April 5-10, pp. 433–442. ACM (2008)

    Google Scholar 

  24. Eguchi, S., Copas, J.: Interpreting Kullback-Leibler divergence with the Neyman-Pearson lemma. J. Multivariate Anal. 97, 2034–2040 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Missaoui, S., Faiz, R. (2014). A Preferences Based Approach for Better Comprehension of User Information Needs. In: Hwang, D., Jung, J.J., Nguyen, NT. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2014. Lecture Notes in Computer Science(), vol 8733. Springer, Cham. https://doi.org/10.1007/978-3-319-11289-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11289-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11288-6

  • Online ISBN: 978-3-319-11289-3

  • eBook Packages: Computer ScienceComputer Science (R0)