Skip to main content

N-Acetylglucosaminyl 1-Phosphate Transferase: An Excellent Target for Developing New Generation Breast Cancer Therapeutic

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 842))

Abstract

Studies from our laboratory have explained that breast tumor progression can be attenuated by targeting the N-linked glycoproteins of the tumor microvasculature and that of tumor cells alike with a protein N-glycosylation inhibitor, tunicamycin. Absence of N-glycosylation leads to an accumulation of un- or mis-folded proteins in the ER and the cell develops “ER stress”. The result is cell cycle arrest, and induction of apoptosis mediated by unfolded protein response (upr) signaling. Tunicamycin inhibited in vitro and in vivo (Matrigel™ implants in athymic nude mice) angiogenesis in a dose dependent manner. The action is irreversible and survived under tumor microenvironment, i.e., in the presence of FGF-2 or VEGF or higher serum concentration. Importantly, tunicamycin prevented the progression of double negative (ER/PR/Her2+) and triple negative (ER/PR/Her2) breast tumors by ~55 to 65 % in 3 weeks in athymic nude mice [Balb/c(nu/nu)]. Analyses of paraffin sections exhibited “ER stress” in both microvasculature and in tumor tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aksoy S, Dizdar O, Harputluoglu H, Altundag K (2007) Demographic, clinical, and pathological characteristics of Turkish triple-negative breast cancer patients: single center experience. Ann Oncol 18:1904–1906

    Article  CAS  PubMed  Google Scholar 

  • Baksi K, Tavárez-Pagán JJ, Martínez JA, Banerjee DK (2008) Unique structural motif supports mannosylphospho dolichol synthase: an important angiogenesis regulator. Curr Drug Targets 9:262–271

    Article  CAS  PubMed  Google Scholar 

  • Banerjee DK (1988) Microenvironment of endothelial cell growth and regulation of protein N-glycosylation. Indian J Biochem Biophys 25:8–13

    CAS  PubMed  Google Scholar 

  • Banerjee DK, Vendrell-Ramos M (1993) Is asparagine-linked protein glycosylation an obligatory requirement for angiogenesis? Indian J Biochem Biophys 30:389–394

    CAS  PubMed  Google Scholar 

  • Banerjee DK, Martinez JA, Baksi K (2007) Significance of protein N-glycosylation in breast tumor angiogenesis. In: Maragoudakis ME, Papadimitriou E (eds) Angiogenesis: basic science and clinical applications. Transworld Research Network, Trivandrum, pp 281–301

    Google Scholar 

  • Banerjee A, Lang JY, Hung MC, Sengupta K, Banerjee SK, Baksi K, Banerjee DK (2011) Unfolded protein response is required in nu/nu mice microvasculature for treating breast tumor with tunicamycin. J Biol Chem. Aug 19;286(33):29127–29138. https://doi.org/10.1074/jbc.M110.169771 for a holistic analysis and conclusion.

  • Banerjee A, Johnson KT, Banerjee IA, Banerjee DK (2013) Nanoformulation enhances anti-angiogenic efficacy of tunicamycin. Transl Cancer Res. August 21;2(4):240–255. https://doi.org/10.3978/j.issn.2218-676X.2013.08.16098.

  • Berkowitz GS, Kelsey JL (2006) Epidemiology of breast cancer. In: Marchant DJ (ed) Diagnosis and management of breast cancer. Elsevier, New York

    Google Scholar 

  • Boring CC, Squires TS, Tong T (1991) Cancer statistics. CA Cancer J Clin 41:19–39

    Article  CAS  PubMed  Google Scholar 

  • Broomhall SR, Hallissey MT, Whiting J, Scholefield J, Tierney G, Stuart RC, Hawkins RE, McCulloch P, Maughan T, Brown PD, Baillet M, Fielding JW (2002) Marimastat as maintenance therapy for patients with advanced gastric cancer: a randomised trial. Br J Cancer 86:1864–1870

    Article  CAS  Google Scholar 

  • Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Racce, breast cancer subtypes, and survivaal in the Carolina Breast Study. JAMA 295:2492–2502

    Google Scholar 

  • Carter EA, Edwards HGM (2001) Biological applications of Raman spectroscopy. In: Gremlich H-U, Bing Y (eds) Infrared and Raman spectroscopy of biological materials. Marcel Deker, New York, pp 421–475

    Google Scholar 

  • Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P (2010) Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 12:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleator S, Heller W, Coombes RC (2007) Triple-negative breast cancer: therapeutic options. Lancet Oncol 8:235–244

    Article  PubMed  Google Scholar 

  • Colleoni M, Rocca A, Sandri MT, Zorzino L, Masci G, Nolè F, Peruzzotti G, Robertson C, Orlando L, Cinieri S, de BF, Viale G, Goldhirsch A (2002) Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 13:73–80

    Article  CAS  PubMed  Google Scholar 

  • Dent RD, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    Article  PubMed  Google Scholar 

  • Erlichman C, Adjei AA, Alberts SR, Sloan JA, Goldberg RM, Pitot HC, Rubin J, Atherton PJ, Klee GG, Humphrey R (2001) Phase I study of the matrix metalloproteinase inhibitor, BAY 12-9566. Ann Oncol 12:389–395

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71

    CAS  PubMed  Google Scholar 

  • Forbes JF (1997) The control of breast cancer: the role of tamoxifen. Semin Oncol 24(Suppl 1):S-15–S-19

    Google Scholar 

  • Fotsis T, Zhang Y, Pepper MS, Adlercreutz H, Montesano R, Nawroth PP, Schweigerer L (1994) The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 368:237–239

    Article  CAS  PubMed  Google Scholar 

  • Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev 5:526–542

    Article  CAS  Google Scholar 

  • Gastl G, Hermann T, Steurer M, Zmija J, Gunsilius E, Unger C, Kraft A (1997) Angiogenesis as a target for tumor treatment. Oncology 54:177–184

    Article  CAS  PubMed  Google Scholar 

  • Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56:5309–5318

    CAS  PubMed  Google Scholar 

  • Hortobagyl GN, Buzdar AU (1995) Current status of adjuvant systemic therapy for primary breast cancer: progress and controversy. CA Cancer J Clin 45:199–226

    Article  Google Scholar 

  • Ingber DE, Folkman J (1989) How does extracellular matrix control capillary morphogenesis? Cell 58:803–805

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun J (2006) Cancer statistics. CA-Cancer J Clin 56:106–130

    Article  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelsey JL, Gammon MD (1991) The epidemiology of breast cancer. CA Cancer J Clin 41:146–165

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515

    Article  CAS  PubMed  Google Scholar 

  • Klauber N, Parangi S, Flynn E, Hamel E, D’Amato RJ (1997) Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res 57:81–86

    CAS  PubMed  Google Scholar 

  • Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19:264–271

    Article  CAS  PubMed  Google Scholar 

  • Longas MO, Kotapati A, Prasad KP, Banerjee A, Santiago J, Baksi K, Banerjee DK (2012) Balancing life with glycoconjugates: monitoring unfolded protein response-mediated anti-angiogenic action of tunicamycin by Raman spectroscopy. Pure Appl Chem 84(9):1907–1918. https://doi.org/10.1351/PAC-CON-12-01-06.

  • Lynn AG, Ries MS (1995) Top 5 cancers for females and males in the US. J Natl Cancer Inst 87:867

    Article  Google Scholar 

  • Martínez JA, Torres-Negrón I, Amigó LA, Banerjee DK (1999) Expression of Glc3Man9GlcNAc2-PP-Dol is a prerequisite for capillary endothelial cell proliferation. Cell Mol Biol (Noisy-le-Grand) 45:137–152

    Google Scholar 

  • Martínez JA, Torres-Negrón I, Amigó LA, Roldán RA, Mendéz A, Banerjee DK (2000) Tunicamycin inhibits capillary endothelial cell proliferation by inducing apoptosis. Targeting dolichol-pathway for generation of new anti-angiogenic therapeutics. Adv Exp Med Biol 476:197–208

    Article  PubMed  Google Scholar 

  • Muramatsu T (1993) Carbohydrate signals in metastasis and prognosis of human carcinomas. Glycobiology 3:291–296

    Article  CAS  PubMed  Google Scholar 

  • Nguyen M, Folkman J, Bischoff J (1992) 1-Deoxymannojirimycin inhibits capillary tube formation in vitro. Analysis of N-linked oligosaccharides in bovine capillary endothelial cells. J Biol Chem 267:26157–26165

    CAS  PubMed  Google Scholar 

  • Nguyen M, Strubel NA, Bischoff J (1993) A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 365:267–269

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CM, Banerjee DK (1990) Role of extracellular signaling on endothelial cell proliferation and protein N-glycosylation. J Cell Physiol 144:467–472

    Article  CAS  PubMed  Google Scholar 

  • Pili R, Chang J, Partis RA, Mueller RA, Chrest FJ, Passaniti A (1995) The alpha-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res 55:2920–2926

    CAS  PubMed  Google Scholar 

  • Rhee J, Han SW, Oh DY, Kim JH, Im S-A, Han W, Park IA, Noh D-Y, Bang Y-J, Kim T-Y (2008) The clinicopathologic characteristics and prognostic significance of triple-negativity in node-negative breast cancer. BMC Cancer 8:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ries LAG, Kosary CKL, Hankey BF et al (1999) SEER cancer statistics review 1973-2996. National Cancer Institute, Bethesda

    Google Scholar 

  • Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557

    Article  CAS  PubMed  Google Scholar 

  • Rudek MA, Figg WD, Dyer V, Dahut W, Turner ML, Steinberg SM, Liewehr DJ, Kohler DR, Pluda JM, Reed E (2001) Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer. J Clin Oncol 19:584–592

    Article  CAS  PubMed  Google Scholar 

  • Sane SU, Cramer SM, Przybycien TM (1999) A holistic approach to protein secondary structure characterization using amide I band Raman spectroscopy. Anal Biochem 269:255–272

    Google Scholar 

  • Sondik EJ (1994) Breast cancer trends: incidence, mortality and survival. Cancer 74:995–999

    Article  CAS  PubMed  Google Scholar 

  • Stockmans G, Deraedt K, Wildiers H, Moerman P, Paridaens R (2008) Triple-negative breast cancer. Curr Opin Oncol 20:614–620

    Article  PubMed  Google Scholar 

  • Taniguchi N, Honke K, Fukuda M (2002) Handbook of glycosyltransferases and their elated genes. Springer, Tokyo

    Book  Google Scholar 

  • Tiganis T, Leaver DD, Ham K, Friedhuber A, Stewart P, Dziadek M (1992) Functional and morphological changes induced by tunicamycin in dividing and confluent endothelial cells. Exp Cell Res 198:191–200

    Article  CAS  PubMed  Google Scholar 

  • Uhr JW, Scheuermann RH, Street NE, Vitetta ES (1997) Cancer dormancy: opportunities for new therapeutic approaches. Nat Med 3:505–509

    Article  CAS  PubMed  Google Scholar 

  • Van Calster B, Vanden Bempt I, Drijkoningen M, Pochet N, Cheng J, Van Huffel S, Hendrickx W, Decock J, Huang HJ, Leunen K, Amant F, Berteloot P, Paridaens R, Wildiers H, Van Limbergen E, Weltens C, Timmerman D, Van Gorp T, Smeets A, Van den Bogaert W, Vergote I, Christiaens MR, Neven P (2009) Axillary lymph node status of operable breast cancers by combined steroid receptor and HER-2 status: triple positive tumours are more likely lymph node positive. Breast Cancer Res Treat 113:181–187

    Article  CAS  PubMed  Google Scholar 

  • Wandall HH, Blixt O, Tarp MA, Pedersen JW, Bennett EP, Mandel U, Ragupathi G, Livingston PO, Hollingsworth MA, Taylor-Papadimitriou J, Burchell J, Clausen H (2010) Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res 70:1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidner N, Folkman J (1996) Tumoral vascularity as a prognostic factor in cancer. Important Adv Oncol 3:167–190

    Google Scholar 

  • Zhang K, Kaufman RJ (2004) Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 279:25935–25938

    Article  CAS  PubMed  Google Scholar 

  • Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 8:161–173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The work was supported in whole or in part, by grants from Susan G. Komen for the Cure BCTR0600582 (to D.K.B.) and NIH/NIMHD 2G12MD007583 (to K.B.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Banerjee, A. et al. (2015). N-Acetylglucosaminyl 1-Phosphate Transferase: An Excellent Target for Developing New Generation Breast Cancer Therapeutic. In: Chakrabarti, A., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 842. Springer, Cham. https://doi.org/10.1007/978-3-319-11280-0_22

Download citation

Publish with us

Policies and ethics