Lateralization of Route Continuation and Route Order

  • Ineke J. M. van der Ham
  • Jacco van den Hoven
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8684)

Abstract

Navigation is a complex cognitive ability and its structure is still poorly understood. Memory for route continuation and route order are hypothesized to be at least partially separate components of navigation ability. In the current experiment, participants studied a route in virtual reality. The dissociation between route continuation (“what turn did you make here?”) and route order (“which object did you see first?”) was tested in a visual half field paradigm, to assess lateralization patterns. Route continuation showed a left visual field advantage and route order a trend for a right visual field bias. This outcome further substantiates a dissociation between spatial and spatiotemporal aspects of navigation in humans.

Keywords

Lateralization navigation continuation order memory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolbers, T., Hegarty, M.: What determines our navigational abilities? Trends in Cognitive Sciences 14, 138–146 (2010)CrossRefGoogle Scholar
  2. 2.
    Janzen, G., Jansen, C., van Turennout, M.: Memory consolidation of landmarks in good navigators. Hippocampus 18, 40–47 (2008)CrossRefGoogle Scholar
  3. 3.
    Fabiani, M., Friedman, D.: Dissociations between memory for temporal order and recognition memory in aging. Neuropsychologia 35(2), 129–141 (1997)CrossRefGoogle Scholar
  4. 4.
    Hannesson, D.K., Howland, J.G., Phillips, A.G.: Interaction between perirhinal and medial prefrontal cortex is required for temporal order but not recognition memory for objects in rats. The Journal of Neuroscience 24(19), 4596–4604 (2004)CrossRefGoogle Scholar
  5. 5.
    Hannesson, D.K., Vacca, G., Howland, J.G., Phillips, A.G.: Medial prefrontal cortex is involved in spatial temporal order memory but not spatial recognition memory in tests relying on spontaneous exploration in rats. Behavioural Brain Research 153, 273–285 (2004)CrossRefGoogle Scholar
  6. 6.
    Hampstead, B.M., Libon, D.J., Moelter, S.T., Swirsky-Sacchetti, T., Scheffer, L., Platek, S.M., Chute, D.: Temporal order memory differences in Alzheimer’s disease and vascular dementia. Journal of Clinical and Experimental Neuropsychology 32(6), 645–654 (2010)CrossRefGoogle Scholar
  7. 7.
    Ekstrom, A.D., Copara, M.S., Isham, E.A., Wang, W., Yonelinas, A.P.: Dissociable networks involved in spatial and temporal order source retrieval. NeurImage 56, 1803–1813 (2011)CrossRefGoogle Scholar
  8. 8.
    Van der Ham, I.J.M., van Zandvoort, M.J.E., Meilinger, T., Bosch, S.E., Kant, N., Postma, A.: Spatial and temporal aspects of navigation in two neurological patients. Neuroreport 21, 685–689 (2010)Google Scholar
  9. 9.
    Chrastil, E.R.: Neural evidence supports a novel framework for spatial navigation. Psychonomic Bulletin and Review 20, 208–227 (2013)CrossRefGoogle Scholar
  10. 10.
    Van der Ham, I.J.M., Kant, N., Postma, A., Visser-Meily, J.M.A.: Is navigation ability a problem in mild stroke patients? Insights from self-reported navigation measures. Journal of Rehabilitation Medicine 45, 429–433 (2013)CrossRefGoogle Scholar
  11. 11.
    O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press, Oxford (1978)Google Scholar
  12. 12.
    Burgess, N., Maguire, E.A., O’Keefe, J.: The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002)CrossRefGoogle Scholar
  13. 13.
    Eichenbaum, H.: Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109–120 (2004)CrossRefGoogle Scholar
  14. 14.
    Iglói, K., Doeller, C.F., Barthoz, A., Rondi-Reig, L., Burgess, N.: Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proceedings of the National Academy of Sciences 107, 14466–14471 (2010)CrossRefGoogle Scholar
  15. 15.
    Bourne, V.J.: The divided visual field paradigm: Methodological considerations. Laterality: Asymmetries of Body, Brain, and Cognition 11(4), 373–393 (2006)Google Scholar
  16. 16.
    Oldfield, R.C.: The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9, 97–113 (1971)CrossRefGoogle Scholar
  17. 17.
    Brodeur, M.B., Dionne-Dostie, E., Montreuil, T., Lepage, M.: The bank of standardized stimuli (BOSS), a new set of 480 normative photos of objects to be used as visual stimuli in cognitive research. PLoS ONE 5(5), e10773 (2010)CrossRefGoogle Scholar
  18. 18.
    Mathôt, S., Schreij, D., Theeuwes, J.: OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods 44(2), 314–324 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ineke J. M. van der Ham
    • 1
  • Jacco van den Hoven
    • 1
  1. 1.Heidelberglaan 1UtrechtThe Netherlands

Personalised recommendations