Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

European Symposium on Research in Computer Security

ESORICS 2014: Computer Security - ESORICS 2014 pp 327–344Cite as

  1. Home
  2. Computer Security - ESORICS 2014
  3. Conference paper
Election Verifiability for Helios under Weaker Trust Assumptions

Election Verifiability for Helios under Weaker Trust Assumptions

  • Véronique Cortier17,
  • David Galindo17,
  • Stéphane Glondu18 &
  • …
  • Malika Izabachène17,19 
  • Conference paper
  • 2940 Accesses

  • 41 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 8713)

Abstract

Most electronic voting schemes aim at providing verifiability: voters should trust the result without having to rely on some authorities. Actually, even a prominent voting system like Helios cannot fully achieve verifiability since a dishonest bulletin board may add ballots. This problem is called ballot stuffing.

In this paper we give a definition of verifiability in the computational model to account for a malicious bulletin board that may add ballots. Next, we provide a generic construction that transforms a voting scheme that is verifiable against an honest bulletin board and an honest registration authority (weak verifiability) into a verifiable voting scheme under the weaker trust assumption that the registration authority and the bulletin board are not simultaneously dishonest (strong verifiability). This construction simply adds a registration authority that sends private credentials to the voters, and publishes the corresponding public credentials.

We further provide simple and natural criteria that imply weak verifiability. As an application of these criteria, we formally prove the latest variant of Helios by Bernhard, Pereira and Warinschi weakly verifiable. By applying our generic construction we obtain a Helios-like scheme that has ballot privacy and strong verifiability (and thus prevents ballot stuffing). The resulting voting scheme, Helios-C, retains the simplicity of Helios and has been implemented and tested.

Keywords

  • voting protocols
  • individual verifiability
  • universal verifiability
  • ballot stuffing
  • ballot privacy
  • Helios

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 258865.

Download conference paper PDF

References

  1. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university president using open-audit voting: Analysis of real-world use of Helios. In: Proceedings of the 2009 Conference on Electronic Voting Technology/Workshop on Trustworthy Elections (2009)

    Google Scholar 

  2. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. In: Fumy, W. (ed.) Advances in Cryptology - EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

    Google Scholar 

  3. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In: Proceedings of the Second Usenix/ACCURATE Electronic Voting Technology Workshop (2007)

    Google Scholar 

  4. International association for cryptologic research, Elections page at http://www.iacr.org/elections/

  5. Cortier, V., Smyth, B.: Attacking and fixing Helios: An analysis of ballot secrecy. In: CSF, pp. 297–311. IEEE Computer Society (2011)

    Google Scholar 

  6. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios for provable ballot secrecy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 335–354. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  7. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  8. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 37–63. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  9. Adida, B., de Marneffe, O., Pereira, O.: Helios voting system, http://www.heliosvoting.org

  10. Pinault, T., Courtade, P.: E-voting at expatriates’ MPs elections in France. In: Kripp, M.J., Volkamer, M., Grimm, R. (eds.) Electronic Voting. LNI, vol. 205, pp. 189–195. GI (2012)

    Google Scholar 

  11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  12. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 111–125. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  13. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship to verifiability. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security, pp. 526–535. ACM (2010)

    Google Scholar 

  14. Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance: New insights from a case study. In: IEEE Symposium on Security and Privacy, pp. 538–553. IEEE Computer Society (2011)

    Google Scholar 

  15. Küsters, R., Truderung, T., Vogt, A.: Clash attacks on the verifiability of e-voting systems. In: IEEE Symposium on Security and Privacy, pp. 395–409. IEEE Computer Society (2012)

    Google Scholar 

  16. Groth, J.: Evaluating security of voting schemes in the universal composability framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 46–60. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  17. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: Atluri, V., di Vimercati, S.D.C., Dingledine, R. (eds.) WPES, pp. 61–70. ACM (2005)

    Google Scholar 

  18. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for Helios under weaker trust assumptions. HAL - INRIA Archive Ouverte/Open Archive, Research Report RR-8855 (2014), http://hal.inria.fr/hal-01011294

  19. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

    CrossRef  MATH  Google Scholar 

  20. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) Advances in Cryptology - CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

    Google Scholar 

  22. Cramer, R., Damgård, I.B., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) Advances in Cryptology - CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  23. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Constructions. Information Security and Cryptography. Springer (2010)

    Google Scholar 

  24. Glondu, S.: Helios with Credentials: Proof of concept and mock election results, http://stephane.glondu.net/helios/

  25. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Distributed ElGamal à la Pedersen: Application to Helios. In: Sadeghi, A.R., Foresti, S. (eds.) WPES, pp. 131–142. ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. LORIA - CNRS, France

    Véronique Cortier, David Galindo & Malika Izabachène

  2. INRIA Nancy Grand Est, France

    Stéphane Glondu

  3. École Polytechnique Féminine, France

    Malika Izabachène

Authors
  1. Véronique Cortier
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. David Galindo
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Stéphane Glondu
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Malika Izabachène
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Fundamental Problems of Technology, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland

    Mirosław Kutyłowski

  2. MSIS Department, Rutgers University, USA

    Jaideep Vaidya

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cortier, V., Galindo, D., Glondu, S., Izabachène, M. (2014). Election Verifiability for Helios under Weaker Trust Assumptions. In: Kutyłowski, M., Vaidya, J. (eds) Computer Security - ESORICS 2014. ESORICS 2014. Lecture Notes in Computer Science, vol 8713. Springer, Cham. https://doi.org/10.1007/978-3-319-11212-1_19

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-11212-1_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11211-4

  • Online ISBN: 978-3-319-11212-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2023 Springer Nature