LeakWatch: Estimating Information Leakage from Java Programs

  • Tom Chothia
  • Yusuke Kawamoto
  • Chris Novakovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8713)

Abstract

Programs that process secret data may inadvertently reveal information about those secrets in their publicly-observable output. This paper presents LeakWatch, a quantitative information leakage analysis tool for the Java programming language; it is based on a flexible “point-to-point” information leakage model, where secret and publicly-observable data may occur at any time during a program’s execution. LeakWatch repeatedly executes a Java program containing both secret and publicly-observable data and uses robust statistical techniques to provide estimates, with confidence intervals, for min-entropy leakage (using a new theoretical result presented in this paper) and mutual information.We demonstrate how LeakWatch can be used to estimate the size of information leaks in a range of real-world Java programs.

Keywords

Quantitative information flow statistical estimation Java mutual information min-entropy leakage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Journal 27(3), 379–423 (1948)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Smith, G.: On the Foundations of Quantitative Information Flow. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Smith, G.: Quantifying Information Flow Using Min-Entropy. In: Proc. of the 8th Conference on Quantitative Evaluation of Systems (QEST 2011), pp. 159–167 (2011)Google Scholar
  4. 4.
    Chothia, T., Kawamoto, Y., Novakovic, C., Parker, D.: Probabilistic Point-to-Point Information Leakage. In: Proc. of the 26th IEEE Computer Security Foundations Symposium (CSF 2013), pp. 193–205. IEEE Computer Society (June 2013)Google Scholar
  5. 5.
    Moddemeijer, R.: On estimation of entropy and mutual information of continuous distributions. Signal Processing 16, 233–248 (1989)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Brillinger, D.R.: Some data analysis using mutual information. Brazilian Journal of Probability and Statistics 18(6), 163–183 (2004)MATHMathSciNetGoogle Scholar
  7. 7.
    Boreale, M., Paolini, M.: On formally bounding information leakage by statistical estimation (2014) (Unpublished Manuscript)Google Scholar
  8. 8.
    Biondi, F., Legay, A., Traonouez, L.-M., Wąsowski, A.: QUAIL: A Quantitative Security Analyzer for Imperative Code. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 702–707. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Mu, C., Clark, D.: A tool: quantitative analyser for programs. In: Proc.of the 8th Conference on Quantitative Evaluation of Systems (QEST 2011), pp. 145–146 (2011)Google Scholar
  10. 10.
    McCamant, S., Ernst, M.D.: Quantitative Information Flow as Network Flow Capacity. In: Proc. of the Conference on Programming Language Design and Implementation (PLDI 2008), pp. 193–205 (2008)Google Scholar
  11. 11.
    Heusser, J., Malacaria, P.: Quantifying Information Leaks in Software. In: Proc. of the 2010 Annual Computer Security Applications Conference (ACSAC 2010), pp. 261–269. ACM Press, Austin (2010)Google Scholar
  12. 12.
    Phan, Q.S., Malacaria, P., Tkachuk, O., Păsăreanu, C.S.: Symbolic quantitative information flow. ACM SIGSOFT Software Engineering Notes 37(6), 1–5 (2012)CrossRefGoogle Scholar
  13. 13.
    Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch, http://www.cs.bham.ac.uk/research/projects/infotools/leakwatch/
  14. 14.
    Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical Measurement of Information Leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 390–404. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Denning, D.E.: Cryptography and Data Security. Addison-Wesley (May 1982)Google Scholar
  16. 16.
    Myers, A.C., Liskov, B.: Complete, Safe Information Flow with Decentralized Labels. In: Proc. of the 1998 IEEE Symposium on Security and Privacy, pp. 186–197. IEEE Computer Society, Oakland (1998)Google Scholar
  17. 17.
    Pearson, K.: X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine Series 5 50(302), 157–175 (1900)CrossRefMATHGoogle Scholar
  18. 18.
    Diez, D.M., Barr, C.D., Cetinkaya-Rundel, M.: OpenIntro Statistics. CreateSpace (2012)Google Scholar
  19. 19.
    Chothia, T., Kawamoto, Y., Novakovic, C.: A Tool for Estimating Information Leakage. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 690–695. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: Compositionality Results for Quantitative Information Flow. In: Proc. of the 11th International Conference on Quantitative Evaluation of Systems, QEST 2014 (to appear, September 2014)Google Scholar
  21. 21.
    OW2 Consortium: ASM, http://asm.ow2.org
  22. 22.
    Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability. Journal of Cryptology, 65–75 (1988)Google Scholar
  23. 23.
    Garcia, F.D., van Rossum, P., Verdult, R., Schreur, R.W.: Wirelessly pickpocketing a Mifare Classic card. In: IEEE Symposium on Security and Privacy (S&P 2009), pp. 3–15. IEEE (2009)Google Scholar
  24. 24.
    Verdult, R., Garcia, F.D., Balasch, J.: Gone in 360 seconds: Hijacking with Hitag2. In: 21st USENIX Security Symposium (USENIX Security 2012), pp. 237–252. USENIX Association (2012)Google Scholar
  25. 25.
    Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP Message Format, http://tools.ietf.org/html/rfc4880
  26. 26.
    Legion of the Bouncy Castle Inc.: The Legion of the Bouncy Castle Java Cryptography APIs, https://www.bouncycastle.org/java.html

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tom Chothia
    • 1
  • Yusuke Kawamoto
    • 2
  • Chris Novakovic
    • 1
  1. 1.School of Computer ScienceUniversity of BirminghamUK
  2. 2.INRIA Saclay & LIX, École PolytechniqueFrance

Personalised recommendations