Skip to main content

CBR Tagging of Emotions from Facial Expressions

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8765))

Included in the following conference series:

Abstract

Mobility and context-awareness are two active research directions that open new potential to recommender systems. Usage of dynamically enriched information from the user context leads the system to find better solutions that are adapted to the specific situations. In this paper we focus on the difficult problem of dynamically acquiring the emotional context about the user during a recommendation process. We use the fact that emotions are tightly connected with facial expressions and it is difficult for people to hide emotions in facial expressions. We describe PhotoMood, a CBR system that uses gestures to identify emotions in faces, and present preliminary experiments with MadridLive, a mobile and context aware recommender system for leisure activities in Madrid. In the experiments, the momentary emotion of a user is dynamically detected from pictures of the facial expression taken unobtrusively with the front facing camera of the mobile device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender systems. AI Magazine 32, 67–80 (2011)

    Google Scholar 

  2. Braunhofer, M., Kaminskas, M., Ricci, F.: Location-aware music recommendation. IJMIR 2, 31–44 (2013)

    Google Scholar 

  3. Benou, P., Bitos, V.: Context-aware query processing in ad-hoc environments of peers. JECO 6, 38–62 (2008)

    Google Scholar 

  4. Quijano-Sánchez, L., Recio-García, J.A., Díaz-Agudo, B., Jiménez-Díaz, G.: Social factors in group recommender systems. ACM Transactions on Intelligent Systems and Technology 4, Article 8 (2013)

    Google Scholar 

  5. Cohn, J.F.: Foundations of human computing: Facial expression and emotion. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds.) AI for Human Computing. LNCS (LNAI), vol. 4451, pp. 1–16. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Ortony, A., Turner, T.J.: What’s basic about basic emotions? Psychological Review 97(3), 315–331 (1990)

    Article  Google Scholar 

  7. Russell, J.A.: Is there universal recognition of emotion from facial expressions? A review of the cross-cultural studies. Psychological Bulletin 115, 102–141 (1994)

    Article  Google Scholar 

  8. Scollon, C.N., Kim-Prieto, C., Diener, E.: Experience sampling: Promises and pitfalls, strengths and weaknesses. Journal of Happiness Studies 4 (2003)

    Google Scholar 

  9. Eckman, P.: Facial expression and emotion. American Psychologist 48, 384–392 (1993)

    Article  Google Scholar 

  10. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: The state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1424–1445 (2000)

    Article  Google Scholar 

  11. Feris, R.S., de Campos, T.E., Cesar Jr., R.M.: Detection and tracking of facial features in video sequences. In: Cairó, O., Sucar, L.E., Cantu, F.J. (eds.) MICAI 2000. LNCS, vol. 1793, pp. 127–135. Springer, Heidelberg (2000)

    Google Scholar 

  12. Solina, F., Peer, P., Batagelj, B., Juvan, S., Kovac, J.: Color-based face detection in the “15 seconds of fame” art installation. In: Proceedings of Mirage 2003 (INRIA Rocquencourt), pp. 38–47 (2003)

    Google Scholar 

  13. Kovac, J., Peer, P., Solina, F.: Human skin color clustering for face detection. In: EUROCON 2003, Computer as a Tool. The IEEE Region 8, vol. 2, pp. 144–148. IEEE (2003)

    Google Scholar 

  14. Wang, J., Tan, T.: A new face detection method based on shape information. Pattern Recognition Letters 21, 463–471 (2000)

    Article  Google Scholar 

  15. Paul, S.K., Uddin, M.S., Bouakaz, S.: Extraction of facial feature points using cumulative histogram. CoRR abs/1203.3270 (2012)

    Google Scholar 

  16. Chawan, P.M., Jadhav, M.M.C., Mashruwala, J.B., Nehete, A.K., Panjari, P.A.: Real time emotion recognition through facial expressions for desktop devices. International Journal of Emerging Science and Engineering (IJESE) 1, 104–108 (2013)

    Google Scholar 

  17. Lin, C., Fan, K.-C.: Triangle-based approach to the detection of human face. Pattern Recognition 34, 1271–1284 (2001)

    Article  MATH  Google Scholar 

  18. Yang, G., Huang, T.S.: Human face detection in a complex background. Pattern Recognition 27, 53–63 (1994)

    Article  Google Scholar 

  19. Draper, B.A., Baek, K., Bartlett, M.S., Beveridge, J.: Recognizing faces with PCA and ICA. Computer Vision and Image Understanding 91, 115–137 (2003) (Special Issue on Face Recognition)

    Google Scholar 

  20. Rowley, H.A., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20, 23–38 (1998)

    Article  Google Scholar 

  21. Sung, K.-K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20, 39–51 (1998)

    Article  Google Scholar 

  22. Lin, H.J., Yen, S.H., Yeh, J.P., Lin, M.J.: Face detection based on skin color segmentation and svm classification. In: SSIRI, pp. 230–231. IEEE Computer Society (2008)

    Google Scholar 

  23. Fragopanagos, N., Taylor, J.: Emotion recognition in human computer interaction. Neural Networks 18, 389–405 (2005) (Emotion and Brain)

    Google Scholar 

  24. Pantic, M., Rothkrantz, L.J.: Facial action recognition for facial expression analysis from static face images. Trans. Sys. Man Cyber. Part B 34, 1449–1461 (2004)

    Article  Google Scholar 

  25. Maglogiannis, I., Vouyioukas, D., Aggelopoulos, C.: Face detection and recognition of natural human emotion using markov random fields. Personal and Ubiquitous Computing 13, 95–101 (2009)

    Article  Google Scholar 

  26. Anderson, S., Conway, M.: Investigating the structure of autobiographical memories. Journal of Experimental Psychology: Learning, Memory, and Cognition 19, 1178–1196 (1993)

    Google Scholar 

  27. Cohen, I., Sebe, N., Garg, A., Chen, L.S., Huang, T.S.: Facial expression recognition from video sequences: temporal and static modeling. Computer Vision and Image Understanding 91, 160–187 (2003) (Special Issue on Face Recognition)

    Article  Google Scholar 

  28. Teeters, A., El Kaliouby, R., Picard, R.: Self-cam: Feedback from what would be your social partner. In: ACM SIGGRAPH 2006 Research Posters. SIGGRAPH 2006. ACM, New York (2006)

    Google Scholar 

  29. Gruebler, A., Suzuki, K.: Analysis of social smile sharing using a wearable device that captures distal electromyographic signals. In: Stoica, A., Zarzhitsky, D., Howells, G., Frowd, C.D., McDonald-Maier, K.D., Erdogan, A.T., Arslan, T. (eds.) EST, pp. 178–181. IEEE Computer Society (2012)

    Google Scholar 

  30. Karapanos, E.: Modeling Users’ Experiences with Interactive Systems. SCI, vol. 436. Springer, Heidelberg (2013)

    Book  Google Scholar 

  31. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  32. Hyvärinen, A., Oja, E.: Independent component analysis: Algorithms and applications. Neural Netw. 13, 411–430 (2000)

    Article  Google Scholar 

  33. Liu, Q., Huang, R., Lu, H., Ma, S.: Face recognition using kernel-based fisher discriminant analysis. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 197–201 (2002)

    Google Scholar 

  34. Guo, G., Li, S.Z., Chan, K.L.: Support vector machines for face recognition. Image and Vision Computing 19, 631–638 (2001)

    Article  Google Scholar 

  35. Nefian, A.V., Hayess, M.H.: Hidden Markov Models for Face Recognition. In: Proc. International Conf. on Acoustics, Speech and Signal Processing (ICASSP 1998), vol. 5, pp. 2721–2724 (1998)

    Google Scholar 

  36. Degtyarev, N., Seredin, O.: Comparative testing of face detection algorithms. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds.) ICISP 2010. LNCS, vol. 6134, pp. 200–209. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lopez-de-Arenosa, P., Díaz-Agudo, B., Recio-García, J.A. (2014). CBR Tagging of Emotions from Facial Expressions. In: Lamontagne, L., Plaza, E. (eds) Case-Based Reasoning Research and Development. ICCBR 2014. Lecture Notes in Computer Science(), vol 8765. Springer, Cham. https://doi.org/10.1007/978-3-319-11209-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11209-1_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11208-4

  • Online ISBN: 978-3-319-11209-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics