Verifiable Delegation of Computations with Storage-Verification Trade-off

  • Liang Feng Zhang
  • Reihaneh Safavi-Naini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8712)

Abstract

Outsourcing computations has attracted much attention in recent years. An important security challenge is ensuring the correctness of the computed results. In the verifiable computation (VC) model of Gennaro, Gentry and Parno (CRYPTO 2010), a client can delegate the computation of its function to a cloud server, and efficiently verify the correctness of any computed results. In the existing VC schemes, the server must store an encoding of the function that doubles the required cloud storage, compared with storing the function itself. In this paper, we introduce a parameter that measures the trade-off between the required cloud storage and the client’s verification time. We construct four (privately or publicly) VC schemes for delegating polynomials and matrices. These schemes allow the client to significantly reduce the consumed cloud storage by slightly increasing its verification time.

Keywords

verifiable computation storage verification trade-off 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From Secrecy to Soundness: Efficient Verification via Secure Computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable Delegation of Computation over Large Datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From Extractable Collision Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again. In: ITCS, pp. 326–349 (2012)Google Scholar
  4. 4.
    Boneh, D., Freeman, D.M.: Homomorphic Signatures for Polynomial Functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory Delegation. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved Delegation of Computation Using Fully Homomorphic Encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Fiore, D., Gennaro, R.: Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications. In: CCS, pp. 501–512 (2012)Google Scholar
  8. 8.
    Gennaro, R., Gentry, C., Parno, B.: Non-Interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Gennaro, R., Wichs, D.: Fully Homomorphic Message Authenticators. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Wichs, D.: Separating Succinct Non-Interactive Arguments from All Falsfiable Assumptions. In: STOC, pp. 99–108 (2011)Google Scholar
  12. 12.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating Computation: Interactive Proofs for Muggles. In: STOC, pp. 113–122 (2008)Google Scholar
  13. 13.
    Juels, A., Kaliski, B.: PORs: Proofs of Retrievability for Large Files. In: CCS, pp. 584–597 (2007)Google Scholar
  14. 14.
    Lewko, A.B., Waters, B.: Efficient Pseudorandom Functions from the Decisional Linear Assumption and Weaker Variants. In: CCS, pp. 112–120 (2009)Google Scholar
  15. 15.
    Naor, M., Reingold, O.: Number-Theoretic Constructions of Efficient Pseudo-Random Functions. J. ACM 51(2), 231–262 (2004)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Papamanthou, C., Shi, E., Tamassia, R.: Signatures of Correct Computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Liang Feng Zhang
    • 1
  • Reihaneh Safavi-Naini
    • 1
  1. 1.Institute for Security, Privacy and Information Assurance Department of Computer ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations