Skip to main content

A Fast Single Server Private Information Retrieval Protocol with Low Communication Cost

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 8712)

Abstract

Existing single server Private Information Retrieval (PIR) protocols are far from practical. To be practical, a single server PIR protocol has to be both communicationally and computationally efficient. In this paper, we present a single server PIR protocol that has low communication cost and is much faster than existing protocols. A major building block of the PIR protocol in this paper is a tree-based compression scheme, which we call folding/unfolding. This compression scheme enables us to lower the communication complexity to O(loglogn). The other major building block is the BGV fully homomorphic encryption scheme. We show how we design the protocol to exploit the internal parallelism of the BGV scheme. This significantly reduces the server side computational overhead and makes our protocol much faster than the existing protocols. Our protocol can be further accelerated by utilising hardware parallelism. We have built a prototype of the protocol. We report on the performance of our protocol based on the prototype and compare it with the current most efficient protocols.

Keywords

  • Private Information Retrieval
  • Fully Homomorphic Encryption
  • Privacy

References

  1. Khoshgozaran, A., Shahabi, C.: Private information retrieval techniques for enabling location privacy in location-based services. In: Bettini, C., Jajodia, S., Samarati, P., Wang, X.S. (eds.) Privacy in Location-Based Applications. LNCS, vol. 5599, pp. 59–83. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  2. Henry, R., Olumofin, F.G., Goldberg, I.: Practical PIR for electronic commerce. In: ACM Conference on Computer and Communications Security, pp. 677–690 (2011)

    Google Scholar 

  3. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: FOCS, pp. 41–50 (1995)

    Google Scholar 

  4. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)

    Google Scholar 

  5. Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  6. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  7. Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are sufficient for non-trivial single-server private information retrieval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 104–121. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  8. Chang, Y.-C.: Single database private information retrieval with logarithmic communication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  9. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  10. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS, pp. 97–106 (2011)

    Google Scholar 

  12. Yi, X., Kaosar, M.G., Paulet, R., Bertino, E.: Single-database private information retrieval from fully homomorphic encryption. IEEE Trans. Knowl. Data Eng. 25(5), 1125–1134 (2013)

    CrossRef  Google Scholar 

  13. Sion, R., Carbunar, B.: On the practicality of private information retrieval. In: NDSS (2007)

    Google Scholar 

  14. Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)

    Google Scholar 

  15. Ding, X., Yang, Y., Deng, R.H., Wang, S.: A new hardware-assisted PIR with o(n) shuffle cost. Int. J. Inf. Sec. 9(4), 237–252 (2010)

    CrossRef  Google Scholar 

  16. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity. In: FOCS, pp. 239–248 (2006)

    Google Scholar 

  17. Lipmaa, H.: First CPIR protocol with data-dependent computation. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  18. Melchor, C.A., Gaborit, P.: A fast private information retrieval protocol. In: ISIT, pp. 1848–1852 (2008)

    Google Scholar 

  19. Ostrovsky, R., Skeith III, W.E.: A survey of single-database private information retrieval: Techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  20. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

    Google Scholar 

  21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  22. Chor, B., Gilboa, N.: Computationally private information retrieval (extended abstract). In: STOC, pp. 304–313 (1997)

    Google Scholar 

  23. Ishai, Y., Kushilevitz, E.: Improved upper bounds on information-theoretic private information retrieval (extended abstract). In: STOC, pp. 79–88 (1999)

    Google Scholar 

  24. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.-F.: Breaking the O(n1/(2k-1)) barrier for information-theoretic private information retrieval. In: FOCS, pp. 261–270 (2002)

    Google Scholar 

  25. Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE Symposium on Security and Privacy, pp. 131–148 (2007)

    Google Scholar 

  26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  27. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K.-C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  28. Bi, J., Liu, M., Wang, X.: Cryptanalysis of a homomorphic encryption scheme from ISIT 2008. In: ISIT, pp. 2152–2156 (2012)

    Google Scholar 

  29. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009)

    Google Scholar 

  30. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  31. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)

    Google Scholar 

  32. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  33. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. IACR Cryptology ePrint Archive 2011, 133 (2011)

    Google Scholar 

  34. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  35. Savage, J.E.: Models of Computation: Exploring the Power of Computing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1997)

    Google Scholar 

  36. Halevi, S., Shoup, V.: Algorithms in HElib. IACR Cryptology ePrint Archive 2014 (2014)

    Google Scholar 

  37. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  38. Granlund, T.: The GMP development team: GNU MP: The GNU Multiple Precision Arithmetic Library. 5.1.3 edn. (2013), http://gmplib.org/

  39. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applications. In: STOC, pp. 262–271 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dong, C., Chen, L. (2014). A Fast Single Server Private Information Retrieval Protocol with Low Communication Cost. In: Kutyłowski, M., Vaidya, J. (eds) Computer Security - ESORICS 2014. ESORICS 2014. Lecture Notes in Computer Science, vol 8712. Springer, Cham. https://doi.org/10.1007/978-3-319-11203-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11203-9_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11202-2

  • Online ISBN: 978-3-319-11203-9

  • eBook Packages: Computer ScienceComputer Science (R0)