Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

European Symposium on Research in Computer Security

ESORICS 2014: Computer Security - ESORICS 2014 pp 1–18Cite as

  1. Home
  2. Computer Security - ESORICS 2014
  3. Conference paper
Detecting Malicious Domains via Graph Inference

Detecting Malicious Domains via Graph Inference

  • Pratyusa K. Manadhata17,
  • Sandeep Yadav18,
  • Prasad Rao17 &
  • …
  • William Horne17 
  • Conference paper
  • 3419 Accesses

  • 12 Citations

  • 3 Altmetric

Part of the Lecture Notes in Computer Science book series (LNSC,volume 8712)

Abstract

Enterprises routinely collect terabytes of security relevant data, e.g., network logs and application logs, for several reasons such as cheaper storage, forensic analysis, and regulatory compliance. Analyzing these big data sets to identify actionable security information and hence to improve enterprise security, however, is a relatively unexplored area. In this paper, we introduce a system to detect malicious domains accessed by an enterprise’s hosts from the enterprise’s HTTP proxy logs. Specifically, we model the detection problem as a graph inference problemwe construct a host-domain graph from proxy logs, seed the graph with minimal ground truth information, and then use belief propagation to estimate the marginal probability of a domain being malicious. Our experiments on data collected at a global enterprise show that our approach scales well, achieves high detection rates with low false positive rates, and identifies previously unknown malicious domains when compared with state-of-the-art systems. Since malware infections inside an enterprise spread primarily via malware domain accesses, our approach can be used to detect and prevent malware infections.

Keywords

  • belief propagation
  • big data analysis for security
  • graph inference
  • malicious domain detection

Download conference paper PDF

References

  1. CRA: Challenges and opportunities with big data (2012), http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf

  2. Cardenas, A.A., Manadhata, P.K., Rajan, S.P.: Big data analytics for security. IEEE Security & Privacy 11(6), 74–76 (2013)

    CrossRef  Google Scholar 

  3. Symantec internet security threat report (2011), http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf

  4. Pearl, J.: Reverend bayes on inference engines: a distributed hierarchical approach. In: Proceedings of the National Conference on Artificial Intelligence (1982)

    Google Scholar 

  5. Yedida, J., Freeman, W., Weiss, Y.: Understanding Belief Propagation and its Generalizations. Exploring Aritificial Intelligence in the New Millennium (2003)

    Google Scholar 

  6. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. International Journal of Computer Vision 40(1), 25–47 (2000)

    CrossRef  MATH  Google Scholar 

  7. Mceliece, R., Mackay, D., Cheng, J.: Turbo decoding as an instance of pearl’s belief propagation algorithm. IEEE Journal on Selected Areas in Communications (1998)

    Google Scholar 

  8. Pandit, S., Chau, D.H., Wang, S., Faloutsos, C.: Netprobe: a fast and scalable system for fraud detection in online auction networks. In: World Wide Web Conference (2007)

    Google Scholar 

  9. Chau, D., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium: Tera-scale graph mining and inference for malware detection. In: SIAM International Conference on Data Mining (2011)

    Google Scholar 

  10. Murphy, K., Weiss, Y., Jordan, M.: Loopy Belief Propagation for Approximate Inference: An Empirical Study. Uncertainity in Artificial Intelligence (1999)

    Google Scholar 

  11. Frey, B.J., MacKay, D.J.C.: A revolution: Belief propagation in graphs with cycles. In: Neural Information Processing Systems (NIPS) (1997)

    Google Scholar 

  12. Alexa: Top Sites, http://www.alexa.com/topsites

  13. Pretti, M.: A message-passing algorithm with damping. Journal of Statistical Mechanics: Theory and Experiment 2005(11), P11008 (2005)

    Google Scholar 

  14. Yen, T.F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W., Juels, A., Kirda, E.: Beehive: Large-scale log analysis for detecting suspicious activity in enterprise networks. In: Proceedings of the 29th Annual Computer Security Applications Conference, ACSAC 2013, pp. 199–208. ACM, New York (2013)

    CrossRef  Google Scholar 

  15. Giura, P., Wang, W.: A context-based detection framework for advanced persistent threats. In: International Conference on Cyber Security (2012)

    Google Scholar 

  16. Bilge, L., Balzarotti, D., Robertson, W., Kirda, E., Kruegel, C.: Disclosure: Detecting botnet command and control servers through large-scale netflow analysis. In: Proceedings of the 28th Annual Computer Security Applications Conference, ACSAC 2012, pp. 129–138. ACM, New York (2012)

    Google Scholar 

  17. Yadav, S., Reddy, A.K.K., Reddy, A.N., Ranjan, S.: Detecting algorithmically generated malicious domain names. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, IMC 2010. ACM, New York (2010)

    Google Scholar 

  18. Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: EXPOSURE: Finding Malicious Domain Using Passive DNS Analysis. In: Proceedings of the Network and Distributed System Security Symposium (NDSS) (2011)

    Google Scholar 

  19. Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou II, N., Dagon, D.: Detecting malware domains at the upper dns hierarchy. In: 20th USENIX Security Symposium (2011)

    Google Scholar 

  20. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a Dynamic Reputation System for DNS. In: USENIX Security Symposium (2010)

    Google Scholar 

  21. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W., Dagon, D.: From throw-away traffic to bots: Detecting the rise of dga-based malware. In: 21st USENIX Security Symposium (2012)

    Google Scholar 

  22. Jiang, N., Cao, J., Jin, Y., Li, L.E., Zhang, Z.L.: Identifying Suspicious Activities Through DNS Failure Graph Analysis. In: IEEE Conference on Network Protocols (2010)

    Google Scholar 

  23. Yadav, S., Reddy, A.L.N.: Winning with DNS failures: Strategies for faster botnet detection. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST, vol. 96, pp. 446–459. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  24. Anderson, D.S., Fleizach, C., Savage, S., Voelker, G.M.: Spamscatter: Characterizing internet scam hosting infrastructure. In: 16th USENIX Security Symposium (2007)

    Google Scholar 

  25. Lin, M., Chiu, C., Lee, Y., Pao, H.: Malicious URL filtering- a big data application. In: IEEE BigData (2013)

    Google Scholar 

  26. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond Blacklists: Learning to Detect Malicious Web Sites from Suspicious URLs. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) (June 2009)

    Google Scholar 

  27. Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D.: Design and Evaluation of a Real-Time URL Spam Filtering Service. IEEE Security and Privacy (2011)

    Google Scholar 

  28. Zhang, Y., Hong, J., Cranor, L.: Cantina: A content-based approach to detecting phishing web sites. In: World Wide Web Conference (May 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Hewlett-Packard Laboratories, USA

    Pratyusa K. Manadhata, Prasad Rao & William Horne

  2. Damballa Inc., USA

    Sandeep Yadav

Authors
  1. Pratyusa K. Manadhata
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sandeep Yadav
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Prasad Rao
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. William Horne
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Fundamental Problems of Technology, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland

    Mirosław Kutyłowski

  2. MSIS Department, Rutgers University, USA

    Jaideep Vaidya

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Manadhata, P.K., Yadav, S., Rao, P., Horne, W. (2014). Detecting Malicious Domains via Graph Inference. In: Kutyłowski, M., Vaidya, J. (eds) Computer Security - ESORICS 2014. ESORICS 2014. Lecture Notes in Computer Science, vol 8712. Springer, Cham. https://doi.org/10.1007/978-3-319-11203-9_1

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-11203-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11202-2

  • Online ISBN: 978-3-319-11203-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.232.62.64

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.