Verifiable Computation with Reduced Informational Costs and Computational Costs

  • Gang Xu
  • George T. Amariucai
  • Yong Guan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8712)

Abstract

Outsourcing computation is a fundamental principle of the new cloud computing paradigm. Among its various aspects, the correctness of the computation result remains paramount. This motivates the birth of verifiable computation, which aims at efficiently checking the result for general-purpose computation. The common goal of recently sprouted verifiable computation protocols is to reduce the costs associated with verification at both prover and verifier. Unfortunately, the high computation and communication costs of verification still keep general verifiable computation away from practicality. Besides the computational costs, we observe that another type of verification cost has been generally ignored until now –the informational costs, namely, the information required for the verification. In particular, in the context of the third-party verification, this cost implies the information leakage of sensitive information regarding the computational task and its results. In this paper, we introduce the new verifiable-computation protocol RIVER, which reduces the computational costs of the verifier and of the prover, comparing to the most recent alternative protocols, and (for the first time in the context of verifiable computation) addresses and decreases informational costs.

Keywords

verifiable computing QAPs PCPs clouds informational costs privacy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Ergun, F., Kumar, S.R.: Approximate checking of polynomials and functional equations. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pp. 592–607. IEEE Computer Society, Washington, DC (1996)Google Scholar
  4. 4.
    Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Karame, G.O., Strasser, M., Čapkun, S.: Secure remote execution of sequential computations. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927, pp. 181–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Sion, R.: Query execution assurance for outsourced databases. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB 2005, pp. 601–612. VLDB Endowment (2005)Google Scholar
  7. 7.
    Thompson, B., Haber, S., Horne, W.G., Sander, T., Yao, D.: Privacy-preserving computation and verification of aggregate queries on outsourced databases. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 185–201. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Wang, C., Ren, K., Wang, J.: Secure and practical outsourcing of linear programming in cloud computing. In: INFOCOM, pp. 820–828. IEEE (2011)Google Scholar
  9. 9.
    Wang, C., Ren, K., Wang, J., Urs, K.M.R.: Harnessing the cloud for securely solving large-scale systems of linear equations. In: Proceedings of the 2011 31st International Conference on Distributed Computing Systems, ICDCS 2011, pp. 549–558. IEEE Computer Society, Washington, DC (2011)CrossRefGoogle Scholar
  10. 10.
    Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, ASIACCS 2010, pp. 48–59. ACM, New York (2010)Google Scholar
  11. 11.
    Garofalakis, M.: Proof sketches: Verifiable in-network aggregation. In: IEEE Internation Conference on Data Engineering, ICDE (2007)Google Scholar
  12. 12.
    Przydatek, B., Song, D., Perrig, A.: Sia: secure information aggregation in sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, SenSys 2003, pp. 255–265. ACM, New York (2003)CrossRefGoogle Scholar
  13. 13.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 113–122. ACM, New York (2008)Google Scholar
  15. 15.
    Canetti, R., Riva, B., Rothblum, G.N.: Two 1-round protocols for delegation of computation. Cryptology ePrint Archive, Report 2011/518 (2011), http://eprint.iacr.org/
  16. 16.
    Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS 2012, pp. 90–112. ACM, New York (2012)Google Scholar
  17. 17.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: The IEEE Symposium on Security and Privacy, IEEE S&P 2013 (2013)Google Scholar
  19. 19.
    Arora, S., Safra, S.: Probabilistic checking of proofs; a new characterization of np. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, SFCS 1992, pp. 2–13. IEEE Computer Society, Washington, DC (1992)Google Scholar
  20. 20.
    Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC 1991, pp. 21–32. ACM, New York (1991)CrossRefGoogle Scholar
  21. 21.
    Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)CrossRefMATHGoogle Scholar
  22. 22.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short pcps. In: Proceedings of the Twenty-Second Annual IEEE Conference on Computational Complexity, CCC 2007, pp. 278–291. IEEE Computer Society, Washington, DC (2007)Google Scholar
  23. 23.
    Setty, S., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument systems for outsourced computation practical (sometimes). In: NDSS (2012)Google Scholar
  24. 24.
    Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking proof-based verified computation a few steps closer to practicality. In: USENIX Security (2012)Google Scholar
  25. 25.
    Xu, G., Amariucai, G., Guan, Y.: Delegation of computation with verification outsourcing: Curious verifiers. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2013. ACM (2013)Google Scholar
  26. 26.
    Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the conflict between generality and plausibility in verified computation. In: Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys 2013, pp. 71–84. ACM, New York (2013)Google Scholar
  27. 27.
    Setty, S., Blumberg, A.J., Walfish, M.: Toward practical and unconditional verification of remote computations. In: Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems, HotOS 2013, p. 29. USENIX Association, Berkeley (2011)Google Scholar
  28. 28.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Knuth, D.E.: Seminumerical Algorithms, the art of computer programming, 3rd edn. Addison-Wesley (2007)Google Scholar
  30. 30.
    Setty, S., Vu, V., Panpalia, N., Braun, B., Ali, M., Blumberg, A.J., Walfish, M.: Taking proof-based verified computation a few steps closer to practicality (extended version). Cryptology ePrint Archive, Report 2012/598 (2012), http://eprint.iacr.org/

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gang Xu
    • 1
  • George T. Amariucai
    • 1
  • Yong Guan
    • 1
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations