Abstract
Most existing malicious Android app detection approaches rely on manually selected detection heuristics, features, and models. In this paper, we describe a new, complementary system, called DroidMiner, which uses static analysis to automatically mine malicious program logic from known Android malware, abstracts this logic into a sequence of threat modalities, and then seeks out these threat modality patterns in other unknown (or newly published) Android apps. We formalize a two-level behavioral graph representation used to capture Android app program logic, and design new techniques to identify and label elements of the graph that capture malicious behavioral patterns (or malicious modalities). After the automatic learning of these malicious behavioral models, DroidMiner can scan a new Android app to (i) determine whether it contains malicious modalities, (ii) diagnose the malware family to which it is most closely associated, (iii) and provide further evidence as to why the app is considered to be malicious by including a concise description of identified malicious behaviors. We evaluate DroidMiner using 2,466 malicious apps, identified from a corpus of over 67,000 third-party market Android apps, plus an additional set of over 10,000 official market Android apps. Using this set of real-world apps, we demonstrate that DroidMiner achieves a 95.3% detection rate, with only a 0.4% false positive rate. We further evaluate DroidMiner’s ability to classify malicious apps under their proper family labels, and measure its label accuracy at 92%.
Keywords
- Mobile Security
- Android Malware Analysis and Detection
Download conference paper PDF
References
Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious apps in official and alternative android markets. In: Proc. of the 19th NDSS (2012)
Chen, K., Johnson, N., Silva, V., Dai, S., MacNamara, K., Magrino, T., Wu, E., Rinard, M., Song, D.: Contextual policy enforcement in android applications with permission event graphs. In: Proc. of the 20th NDSS (2013)
Peng, H., Gates, C., Sarm, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C., Molloy, I.: Using probabilistic generative models for ranking risks of android apps. In: Proc. of the 19th CCS
Wu, D., Mao, C., Wei, T., Lee, H., Wu., K.: Droidmat: Android malware detection through manifest and api calls tracing. In: Proc. of the 7th Asia JCIS (2012)
Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: Effective and explainable detection of android malware in your pocket. In: Proc. of NDSS (2014)
Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: Droidminer: Automated mining and characterization of fine-grained malicious behaviors in android applications. Technical report, Texas A&M University (2014), http://faculty.cse.tamu.edu/guofei/paper/DroidMiner_TechReport_2014.pdf
60 percentage of android malware hide in fake versions of popular apps, http://thenextweb.com/google/2012/10/05/over-60-percent-of-android-malware-comes-from-one-family-hides-in-fake-versions-of-popular-apps/
Association mining rule, http://en.wikipedia.org/wiki/Association_rule_learning
Androguard, http://code.google.com/p/androguard/
Dex2jar, https://code.google.com/p/dex2jar/
extensible graph markup and modeling language, http://www.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML/draft-xgmml-20001006.html
Slideme android market, http://slideme.org/
App dh android market, http://www.appdh.com/
Anzhi android market, http://www.anzhi.com/
Virustotal, https://www.virustotal.com/
Android malware genome project, http://www.malgenomeproject.org/
Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution. In: Proc. of the 33th IEEE Security and Privacy (2012)
Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid android: versatile protection for smartphones. In: Proc. of the 26th ACSAC (2010)
Schmidt, A., Bye, R., Schmidt, H., Clausen, J., Kiraz, O., Yxksel, K., Camtepe, S., Sahin, A.: Static analysis of executables for collaborative malware detection on android. In: ICC Communication and Information Systems Security Symposium (2009)
Schmidt, A., Schmidt, H., Clausen, J., Yuksel, K., Kiraz, O., Sahin, A., Camtepe, S.: Enhancing security of linux-based android devices. In: Proc. of 15th International Linux Kongress
Yan, L., Yin, H.: Droidscope: Seamlessly reconstructing the os and dalvik semantic views for dynamic android malware analysis. In: Proc. of the 21st USENIX Security (2012)
Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application security. In: Proc. of the 20th USENIX (2011)
Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystied. In: Proc. of the 18th CCS (2011)
Bartel, A., Klein, J., Monperrus, M., Traon, Y.L.: Automatically securing permission-based software by reducing the attack surface: An application to android. In: Proc. of the 27th IEEE/ACM International Conference on Automated Software Engineering (2012)
Au, K., Zhou, Y., Huang, Z., Lie, D., Gong, X., Han, X., Zhou, W.: Pscout: Analyzing the android permission specification. In: Proc. of the 19th CCS (2012)
Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification. In: Proc. of the 16th CCS (2009)
Frank, M., Dong, B., Felt, A.P., Song, D.: Mining permission request patterns from android and facebook applications. In: Proc. of ICDM 2012 (2012)
Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: Mining API-level features for robust malware detection in android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M. (eds.) SecureComm 2013. LNICST, vol. 127, pp. 86–103. Springer, Heidelberg (2013)
Maggi, F., Valdi, A., Zanero, S.: AndroTotal: a flexible, scalable toolbox and service for testing mobile malware detectors. In: Proc. of SPSM 2013 (2013)
Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation technique to automatically reconstruct android malware behaviors. In: Proc. of EUROSEC 2013 (2013)
Enck, W., Gilbert, P., Chun, B., Cox, L.P., Jung, J., Mc-Daniel, P., Sheth, A.N.: Taintdroid: An information-flow tracking system for realtime privacy monitoring on smartphones. In: Proc. of the 9th OSDI (2010)
Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accurate zero-day android malware detection. In: Proc. of the 10th MobiSys (2012)
Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Alis, J.B.: Dendroid: A text mining approach to analyzing and classifying code structures in android malware families (2012)
Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: lightweight provenance for smart phone operating systems. In: Proc. of the 20th USENIX Security (2011)
Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: Towards taming privilege-escalation attacks on android. In: Proc. of the 19th NDSS (2012)
Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids you’re looking for: Retrofitting android to protect data from imperious applications. In: Proc. of the 18th CCS (2011)
Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and enforcement with user-defined runtime constraints. In: Proc. of the 5th ICCS (2010)
Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., Peter, M.: L4android: A generic operating system frame- work for secure smartphones. In: Proc. of the 1st Workshop on Security and Privacy in Smartphones and Mobile Devices (2011)
Andrus, J., Dall, C., Hof, A.V., Laadan, O., Nieh, J.: Cells: A virtual mobile smartphone architecture. In: Proc. of the 23rd SOSP (2011)
Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., Zhou, W.: Smartdroid: an automatic system for revealing ui-based trigger conditions in android applications. In: Proc. of the 2nd Workshop on Security and Privacy in Smartphones and Mobile Devices (2012)
Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: evaluating android anti-malware against transformation attacks. In: Proc. of the 8th ICCS (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P. (2014). DroidMiner: Automated Mining and Characterization of Fine-grained Malicious Behaviors in Android Applications. In: Kutyłowski, M., Vaidya, J. (eds) Computer Security - ESORICS 2014. ESORICS 2014. Lecture Notes in Computer Science, vol 8712. Springer, Cham. https://doi.org/10.1007/978-3-319-11203-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-11203-9_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11202-2
Online ISBN: 978-3-319-11203-9
eBook Packages: Computer ScienceComputer Science (R0)