Skip to main content

The DV-Xα Molecular Orbital Calculation Method and Recent Development

  • Chapter
  • First Online:
The DV-Xα Molecular-Orbital Calculation Method

Abstract

Development history of the DV-Xα cluster method, which is one of the first-principles molecular orbital calculation method, is introduced and the recent progress of the DV-Xα method is described. Especially the abilities of the total energy calculation of clusters and the many electron states calculation are superiorities than any other molecular orbital methods. We have described the summary of the theories and the applications such as the movement of the Li ions in the super-ionic conductors and the absorption and fluorescence spectra of the lanthanide ions in phosphate glasses. They are the unrivaled studies because of the difficulties of the calculation of the total energy of the heavy ions and the many electron interactions including the relativistic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi H (1977) Relativistic molecular orbital theory in the Dirac-Slater model. Technol Rept Osaka Univ 27(1364–1393):569–576

    CAS  Google Scholar 

  • Adachi H, Tsukada M, Satoko C (1978) Discrete variational Xα cluster calculations. I. Application to metal clusters. J Phys Soc Jpn 45(3):875–883

    Article  CAS  Google Scholar 

  • Ajithkumar G, Gupta PK, Jose G, Unnikrishnan NV (2000) Judd-Ofelt intensity parameters and laser analysis of Pr3+ doped phosphate glasses sensitized by Mn2+ ions. J Non-Cryst Solids 275(1):93–106

    Article  CAS  Google Scholar 

  • Araki R, Hayashi A, Kowada Y, Tatsumisago M, Minami T (2001) Electronic states calculated by the DV-Xα cluster method for lithium ion conductive Li2S-SiS2-Li4SiO4 oxysulfide glasses. J Non-Cryst Solids 288(1–3):1–7

    Article  CAS  Google Scholar 

  • Brik MG, Ogasawara K (2007) Comparative study of the absorption spectrum of Li2CaSiO4:Cr4+: first-principles fully relativistic and crystal field calculations. Opt Mater 30(3):399–406

    Article  CAS  Google Scholar 

  • Dieke GH (1968) Spectra energy levels of rare earth ions in crystals. Wiley, New York

    Google Scholar 

  • Ellis DE, Adachi H, Averill FW (1976) Molecular cluster theory for chemisorption of first row atoms on nickel (100) surfaces. Surf Sci 58(2):497–510

    Article  CAS  Google Scholar 

  • Herman F, Skillman S (1963) Atomic structure calculations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Imanaka N, Tamura S, Adachi G, Kowada Y (2000) Electronic state of trivalent ionic conductors with Sc2(WO4)3-type structure. Solid State Ion 130(3–4):179–182

    Article  CAS  Google Scholar 

  • Ishii T, Ogasawara K, Adachi H, Burmester P, Huber G (2004a) First-principles analysis for the optical absorption spectra of metal ions in solids. Int J Quant Chem 99(4):488–494

    Article  CAS  Google Scholar 

  • Ishii T, Brik MG, Ogasawara K (2004b) First-principles analysis method for the multiplet structures of rare-earth ions in solids. J Alloy Compd 380(1–2 Spec Iss):136–140

    Google Scholar 

  • Johnson KH (1966) “Multiple-scattering” model for polyatomic molecules. J Chem Phys 45(8):3085–3095

    Article  CAS  Google Scholar 

  • Jose G, Thomas V, Jose G, Paulose PI, Unnikrishnan NV (2003) Application of a modified Judd-Ofelt theory to Pr3+ doped phosphate glasses and the evaluation of radiative properties. J Non-Cryst Solids 319(1–2):89–94

    Article  CAS  Google Scholar 

  • Jouini A, Ferid M, Gâcon JC, Grosvalet L, Thozet A, Trabelsi-Ayadi M (2003) Crystal structure and optical study of praseodymium polyphosphate Pr(PO3)3. Mater Res Bull 38(11–12):1613–1622

    Article  CAS  Google Scholar 

  • Kowada Y, Adachi H, Tatsumisago M, Minami T (1998) Electronic states of Ag ions in AgI-based superionic conducting glasses. J Non-Cryst Solids 232–234:497–501

    Article  Google Scholar 

  • Kowada Y, Yamada Y, Tatsumisago M, Minami T, Adachi H (2000) Variation of electronic state of AgI-based superionic conductors with movement of Ag ions. Solid State Ion 136–137:393–397

    Article  Google Scholar 

  • Kowada Y, Okamoto M, Tanaka I, Adachi H, Tatsumisago M, Minami T (2004) Chemical bonding of Ag ions in AgI-based superionic conducting glasses. J Non-Cryst Solids 345–346:489–493

    Article  Google Scholar 

  • Kowada Y, Tatsumisago M, Minami T, Adachi H (2008a) Electronic state of sulfide-based lithium ion conducting glasses. J Non-Cryst Solids 354(2–9):360–364

    Article  CAS  Google Scholar 

  • Kowada Y, Tatsumisago M, Minami T, Adachi T (2008b) Chemical bonding of mobile cations in superionic conductors. Adv Quant Chem 54:255–270

    Article  CAS  Google Scholar 

  • Kowada Y, Nishitani W, Ogasawara K (2009a) Total cluster energy calculation of lithium ion conductors by the DV-Xα method. Int J Quant Chem 109(12):2658–2663

    Article  CAS  Google Scholar 

  • Kowada Y, Noma S, Ogasawara K (2009b) Fluorescence spectra of Pr3+ ions in phosphate materials calculated by the DVME method. Int J Quant Chem 109(12):2753–2757

    Article  CAS  Google Scholar 

  • Kowada Y, Tatsumisago M, Minami T (2009c) Chemical bonding and lithium ion conductions in Li3N. Solid State Ion 180(6–8):462–466

    Article  CAS  Google Scholar 

  • Kowada Y, Hayashi A, Tatsumisago M (2010) Chemical bonding of Li ions in Li7P3S11 crystal. J Phys Soc Jpn 79(Suppl A):65–68

    Google Scholar 

  • Koyama Y, Yamada Y, Tanaka I, Nishitani SR, Adachi H, Murayama M, Kanno R (2002) Evaluation of migration energy of lithium ions in chalcogenides and halides by first principles calculation. Mater Trans 43(7):1460–1463

    Article  CAS  Google Scholar 

  • Liberman D, Waber JT, Cromer DT (1965) Self-consistent-field Dirac-Slater wave functions for atoms and ions. I. Comparison with previous calculations. Phys Rev 137(1A):A27–A34

    Article  Google Scholar 

  • Miniscalco WJ (1991) Erbium-doped glasses for fiber amplifiers at 1500 nm. J Lightwave Tech 9(2):234–250

    Article  CAS  Google Scholar 

  • Moorthy LR, Jayasimhadri M, Radhapathy A, Ravikumar RVSSN (2005) Lasing properties of Pr3+-doped tellurofluorophosphate glasses. Mater Chem Phys 93(2–3):455–460

    Article  CAS  Google Scholar 

  • Ogasawara K, Iwata T, Koyama Y, Ishii T, Tanaka I, Adachi H (2001) Relativistic cluster calculation of ligand-field multiplet effects on cation L2,3 x-ray-absorption edges of SrTiO3, NiO and CaF2. Phys Rev B 64(11): Art no 115413, pp 1154131–1154135

    Google Scholar 

  • Ogasawara K, Watanabe S, Toyoshima H, Ishii T, Brik M G, Ikeno H, Tanaka I (2005) Optical spectra of trivalent lanthanides in LiYF4 crystal. J Solid State Chem 178(2 Spec Iss):412–418

    Google Scholar 

  • Reddy MR, Raju SB, Veeraiah N (2000) Optical absorption and fluorescence spectra studies of Ho3+ ions in PbO-Al2O3-B2O3 glass system. J Phys Chem Solids 61(10):1567–1571

    Article  CAS  Google Scholar 

  • Rosen A, Ellis DE (1974) Relativistic molecular wavefunctions: XeF2. Chem Phys Lett 27(4):595–599

    Article  CAS  Google Scholar 

  • Rosen A, Ellis DE, Adachi H, Averill FW (1976) Calculations of molecular ionization energies using a self-consistent-charge Hartree-Fock-Slater method. J Chem Phys 65(9):3629–3634

    Article  CAS  Google Scholar 

  • Sarnthein J, Schwarz K, Blöchl PE (1996) Ab initio molecular-dynamics study of diffusion and defects in solid Li3N. Phys Rev B 53(14):9084–9091

    Article  CAS  Google Scholar 

  • Schulz H, Thiemann KH (1979) Defect structure of the ionic conductor lithium nitride. Acta Crystallogr Sect A A35(2):309–314

    Article  CAS  Google Scholar 

  • Slater JC (1974) Quantum theory of molecules and solids, vol 4. McGraw-Hill, New York

    Google Scholar 

  • Souza Filho AG, Mendes Filho J, Melo FEA, Custódio MCC, Lebullenger R, Hernandes AC (2000) Optical properties of Sm3+ doped lead fluoroborate glasses. J Phys Chem Solids 61(9):1535–1542

    Article  CAS  Google Scholar 

  • Tanabe S, Sugimoto N, Ito S, Hanada T (2000) Broad-band 1.5 μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier. J Lumin 87:670–672

    Article  Google Scholar 

  • Tanabe S, Hayashi H, Hanada T, Onodera N (2002) Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals. Opt Mater 19(3):343–349

    Article  CAS  Google Scholar 

  • Toyoshima H, Watanabe S, Ogasawara K, Yoshida H (2007) First-principles calculations of 4f-5d optical absorption spectra in BaMgAl10O17:Eu. J Lumin 122–123(1–2):104–106

    Article  Google Scholar 

  • Wahl J, Holland U (1978) Local ionic motion in the superionic conductor Li3N. Solid State Commun 27(3):237–241

    Article  CAS  Google Scholar 

  • Walker JR, Catlow CRA (1981) Defect structure and ionic conductivity in lithium nitride. Philosophical Magazine A 43(2):265–272

    Article  CAS  Google Scholar 

  • Wang JS, Vogel EM, Snitzer E (1994) Tellurite glass: a new candidate for fiber devices. Opt Mater 3(3):187–203

    Article  CAS  Google Scholar 

  • Watanabe S, Kamimura H (1989) First-principles calculations of multiplet structures of transition metal deep impurities in II–VI and III–V semiconductors. Mater Sci Eng B3(3):313–324

    Article  CAS  Google Scholar 

  • Watanabe S, Ishii T, Fujimura K, Ogasawara K (2006) First-principles relativistic calculation for f4-5d transition energy of Ce3+ in various fluoride hosts. J Solid State Chem 179(8):2438–2442

    Article  CAS  Google Scholar 

  • Yoshida H, Ogasawara K (2009) Theoretical analysis of phosphors based on first-principles cluster calculations using the relativistic DVME method. ECS Trans 16(31):35–40

    Article  CAS  Google Scholar 

  • Yuan J–L, Zhang H, Zhao J–L, Chen H–H, Yang X–X, Zhang G–B (2008) Synthesis, structure and luminescent properties of Lu(PO3)3. Opt Mater 30(9):1369–1374

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Kowada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kowada, Y., Ogasawara, K. (2015). The DV-Xα Molecular Orbital Calculation Method and Recent Development. In: Ishii, T., Wakita, H., Ogasawara, K., Kim, YS. (eds) The DV-Xα Molecular-Orbital Calculation Method. Springer, Cham. https://doi.org/10.1007/978-3-319-11185-8_1

Download citation

Publish with us

Policies and ethics