Abstract
In this work, we present a new multi-parametric magnetic resonance imaging (MP-MRI) texture feature model for automatic detection of prostate cancer. In addition to commonly used imaging sequences in conventional MP-MRI, namely T2-weighted MRI (T2w) and diffusion-weighted imaging (DWI), our proposed MP-MRI texture feature model uses computed high-b DWI (CHB-DWI) and a new diffusion imaging sequence called correlated diffusion imaging (CDI). A set of texture features was calculated for both the conventional MP-MRI and new MP-MRI texture feature model. We evaluated the performance of the proposed MP-MRI texture feature model via leave-one-patient-out cross-validation using a Bayesian classifier trained on cancerous and healthy tissue samples obtained from real clinical MP-MRI datasets. The proposed MP-MRI texture feature model outperformed the conventional model (i.e., T2w+DWI) with regard to cancer detection accuracy.
Keywords
- Prostate Cancer
- Apparent Diffusion Coefficient
- Clinical Decision Support System
- Bayesian Classifier
- Prostate Cancer Detection
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options

References
Canadian Cancer Society: Canadian Cancer Statistics (2013)
American Cancer Society: Cancer Facts and Figures (2013)
Ren, J., Wang, F., Wei, G., Yang, Y., Liu, Y., Wei, M., Huan, Y., Larson, A.C., Zhang, Z.: MRI of prostate cancer antigen expression for diagnosis and immunotherapy. PLoS ONE 7(60), e38350 (2012)
Canadian Cancer Society: Canadian Cancer Statistics (2011)
Andriole, G.L., et al.: PLCO Project Team. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009)
Schroder, F.H., et al.: ERSPC Investigators, screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009)
Loeb, S., et al.: Systematic review of complications of prostate biopsy. Eur. Urol. 64(6), 876–892 (2013)
Schroder, F.H., et al.: ERSPC Investigators. Prostate-cancer mortality at 11 years of follow-up. N. Engl. J. Med. 366(11), 981–990 (2012)
Haider, M.A., van der Kwast, T.H., Tanguay, J., Evans, A.J., Hashmi, A.T., Lockwood, G., Trachtenberg, J.: Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR. Am. J. Roentgenol. 189(2), 323–328 (2007)
Langer, D.L., van der Kwast, T.H., Evans, A.J., Plotkin, A., Trachtenberg, J., Wilson, B.C., Haider, M.H.: Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K-trans, v(e), and corresponding histologic features. Radiology 255(2), 485–494 (2010)
Ozer, S., Haider, M.A., Langer, D.L., van der Kwast, T.H., Evans, A.J., Wernick, M.N., Trachtenberg, J., Yetik, I.S.: Prostate cancer localization with multispectral MRI based on relevance vector machines. In: 2009 IEEE International Symposium on Biomedical Imaging From Nano to Macro, IEEE, pp. 73–76 (2009)
Madabhushi, A., Feldman, M.D., Metaxas, D.N., Tomaszeweski, J., Chute, D.: Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI. IEEE Trans. Med. Imaging 24(12), 1611–1625 (2005)
Liu, X., Langer, D.L., Haider, M.A., Yang, Y., Wernick, M.N., Yetik, I.S.: Prostate cancer segmentation with simultaneous estimation of Markov random field parameters and class. IEEE Trans. Med. Imaging 28(6), 906–915 (2009)
Ozer, S., Langer, D.L., Liu, X., Haider, M.A., van der Kwast, T.H., Evans, A.J., Yang, Y., Wernick, M.N., Miles, N., Yetik, I.S.: Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI. Med. Phys. 37(4), 1873–1883 (2010)
Glaister, J., Cameron, A., Wong, A., Haider, M.A.: Quantitative investigative analysis of tumour separability in the prostate gland using ultra-high b-value computed diffusion imaging. In: EMBC’2012, IEEE pp. 420–423 (2012)
Wong, A., Glaister, J., Cameron, A., Haider, M.A.: Correlated diffusion imaging. BMC Med. Imaging 13, 26 (2013)
Koh, D.M., Padhani, A.R.: Diffusion-weighted MRI: a new functional clinical technique for tumour imaging. Br. J. Radiol. 79, 633–635 (2006)
Walker-Samuel, S., Orton, M., McPhail, L.D., Robinson, S.P.: Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid tumors. Magn. Reson. Med. 62(2), 420–429 (2009)
Rosenkrantz, A.B., Chandarana, H., Hindman, N., Deng, F.M., Babb, J.S., Taneja, S.S., Geppert, C.: Computed diffusion-weighted imaging of the prostate at 3T: impact on image quality and tumor detection. Proc. Int. Soc. Magn. Reson. Med. 21, 94 (2013)
Ganeshana, B., Abaleke, S., Young, R.C., Chatwin, C.R., Miles, K.A.: Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10, 137–143 (2010)
Goh, V., Ganeshan, B., Nathan, P., Juttla, J.K., Vinayan, A., Miles, K.A.: Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261(1), 165–71 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Khalvati, F., Modhafar, A., Cameron, A., Wong, A., Haider, M.A. (2014). A Multi-Parametric Diffusion Magnetic Resonance Imaging Texture Feature Model for Prostate Cancer Analysis. In: O'Donnell, L., Nedjati-Gilani, G., Rathi, Y., Reisert, M., Schneider, T. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-11182-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-11182-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11181-0
Online ISBN: 978-3-319-11182-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)