Advertisement

Diffusion Propagator Estimation Using Gaussians Scattered in q-Space

  • Lipeng Ning
  • Oleg Michailovich
  • Carl-Fredrik Westin
  • Yogesh Rathi
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

The ensemble average diffusion propagator (EAP) obtained from diffusion MRI (dMRI) data captures important structural properties of the underlying tissue. As such, it is imperative to derive accurate estimate of the EAP from the acquired diffusion data. Taking inspiration from the theory of radial basis functions, we propose a method for estimating the EAP by representing the diffusion signal as a linear combination of 3D anisotropic Gaussian basis functions centered at the sample points in the q-space. This is in contrast to other methods, that always center the Gaussians at the origin in q-space. We also derive analytical expressions for the estimated diffusion orientation distribution function (ODF), the return-to-the-origin probability (RTOP) and the mean-squared-displacement (MSD). We validate our method on data obtained from a physical phantom with known crossing angle and on in-vivo human brain data. The performance is compared with the 3D-SHORE method of [4, 9] and radial basis function based method of [15].

Notes

Acknowledgements

This work has been supported by NIH grants: R01MH097979 (Rathi), R01MH074794 (Westin), P41RR013218, P41EB015902 (Kikinis, Core PI: Westin), and Swedish research grant VR 2012-3682 (Westin).

References

  1. 1.
    Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52(5), 965–978 (2004)CrossRefGoogle Scholar
  2. 2.
    Assemlal, H.E., Tschumperlé, D., Brun, L.: Efficient and robust computation of PDF features from diffusion MR signal. Med. Image Anal. 13(5), 715–729 (2009)CrossRefGoogle Scholar
  3. 3.
    Basser, P., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson., Ser. B 103(3), 247–254 (1994)Google Scholar
  4. 4.
    Cheng, J., Ghosh, A., Jiang, T., Deriche, R.: Model-free and analytical EAP reconstruction via spherical polar Fourier diffusion MRI. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010, pp. 590–597. Springer (2010)Google Scholar
  5. 5.
    Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J.F., Poupon, C.: Multiple q-shell diffusion propagator imaging. Med. Image Anal. 15(4), 603–621 (2011)CrossRefGoogle Scholar
  6. 6.
    Hosseinbor, A.P., Chung, M.K., Wu, Y.C., Alexander, A.L.: Bessel fourier orientation reconstruction (bfor): an analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices. NeuroImage 64, 650–670 (2013)CrossRefGoogle Scholar
  7. 7.
    Jian, B., Vemuri, B.C.: A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRI. IEEE Trans. Med. Imaging 26(11), 1464–1471 (2007)CrossRefGoogle Scholar
  8. 8.
    Lanczos, C.: Applied Analysis. Courier Dover Publications (1988)Google Scholar
  9. 9.
    Merlet, S.L., Deriche, R.: Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI. Med. Image Anal. 17(5), 556–572 (2013)Google Scholar
  10. 10.
    Moussavi-Biugui, A., Stieltjes, B., Fritzsche, K., Semmler, W., Laun, F.B.: Novel spherical phantoms for Q-ball imaging under in vivo conditions. Magn. Reson. Med. 65(1), 190–194 (2011)CrossRefGoogle Scholar
  11. 11.
    Özarslan, E., Koay, C., Shepherd, T., Blackb, S., Basser, P.: Simple harmonic oscillator based reconstruction and estimation for three-dimensional q-space MRI. In: ISMRM 17th Annual Meeting and Exhibition, Honolulu, p. 1396 (2009)Google Scholar
  12. 12.
    Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)CrossRefGoogle Scholar
  13. 13.
    Rathi, Y., Gagoski, B., Setsompop, K., Michailovich, O., Grant, P.E., Westin, C.F.: Diffusion propagator estimation from sparse measurements in a tractography framework. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, pp. 510–517. Springer (2013)Google Scholar
  14. 14.
    Rathi, Y., Michailovich, O., Setsompop, K., Bouix, S., Shenton, M.E., Westin, C.F.: Sparse multi-shell diffusion imaging. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011, pp. 58–65. Springer (2011)Google Scholar
  15. 15.
    Rathi, Y., Niethammer, M., Laun, F., Setsompop, K., Michailovich, O., Grant, P.E., Westin, C.F.: Diffusion propagator estimation using radial basis functions. In: Computational Diffusion MRI and Brain Connectivity, pp. 57–66. Springer (2014)Google Scholar
  16. 16.
    Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2–3), 193–210 (1999)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)CrossRefGoogle Scholar
  18. 18.
    Wu, Y., Alexander, A.: Hybrid diffusion imaging. NeuroImage 36(3), 617–629 (2007)CrossRefGoogle Scholar
  19. 19.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lipeng Ning
    • 1
  • Oleg Michailovich
    • 2
  • Carl-Fredrik Westin
    • 1
  • Yogesh Rathi
    • 1
  1. 1.Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations