A Geometrical Approach for Parameter Selection of Radial Basis Functions Networks

  • Luiz C. B. Torres
  • André P. Lemos
  • Cristiano L. Castro
  • Antônio P. Braga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8681)

Abstract

The RBF network is commonly used for classification and function approximation. The center and radius of the activation function of neurons is an important parameter to be found before the network training. This paper presents a method based on computational geometry to find these coefficients without any parameters provided by the user. The method is compared with a SVM and experimental results showed that our approach is promising.

Keywords

machine learning classification RBF neural network gabriel graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic & Soft Computing 17 (2011)Google Scholar
  2. 2.
    Bache, K., Lichman, M.: UCI machine learning repository (2013), http://archive.ics.uci.edu/ml
  3. 3.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)Google Scholar
  4. 4.
    Bouchired, S., Ibnkahla, M., Roviras, D., Castanie, F.: Equalization of satellite mobile communication channels using combined self-organizing maps and rbf networks. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998, vol. 6, pp. 3377–3379. IEEE (1998)Google Scholar
  5. 5.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  6. 6.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)MATHGoogle Scholar
  7. 7.
    Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers (3), 326–334 (1965)Google Scholar
  8. 8.
    De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer (2000)Google Scholar
  9. 9.
    Guyon, I., Boser, B., Vapnik, V.: Automatic capacity tuning of very large vc-dimension classifiers. Advances in Neural Information Processing Systems, 147 (1993)Google Scholar
  10. 10.
    Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, pp. 1137–1145. Lawrence Erlbaum Associates Ltd (1995)Google Scholar
  11. 11.
    Sing, J.K., Basu, D.K., Nasipuri, M., Kundu, M.: Improved k-means algorithm in the design of rbf neural networks. In: TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, vol. 2, pp. 841–845. IEEE (2003)Google Scholar
  12. 12.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83 (1945)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Luiz C. B. Torres
    • 1
  • André P. Lemos
    • 1
  • Cristiano L. Castro
    • 1
  • Antônio P. Braga
    • 1
  1. 1.Department of Electronics EngineeringFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations