Global and Local Rejection Option in Multi–classification Task

  • Marcin Luckner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8681)


This work presents two rejection options. The global rejection option separates the foreign observations – not defined in the classification task – from the normal observations. The local rejection option works after the classification process and separates observations individually for each class. We present implementation of both methods for binary classifiers grouped in a graph structure (tree or directed acyclic graph). Next, we prove that the quality of rejection is identical for both options and depends only on the quality of binary classifiers. The methods are compared on the handwritten digits recognition task. The local rejection option works better for the most part.


Rejection Option Support Vector Machines Graph Ensemble Pattern Recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, S.: Support Vector Machines for Pattern Classification. Advances in Pattern Recognition. Springer-Verlag New York, Inc. (2005)Google Scholar
  2. 2.
    Chow, C.: On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory 16(1), 41–46 (1970)CrossRefzbMATHGoogle Scholar
  3. 3.
    Fumera, G., Roli, F.: Support Vector Machines with Embedded Reject Option. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 68–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Ha, T.: Optimum Tradeoff between Class-selective Rejection Error and Average Number of Classes. Engineering Applications of Artificial Intelligence 10(6), 525–529 (1997)CrossRefGoogle Scholar
  5. 5.
    Homenda, W., Luckner, M., Pedrycz, W.: Classification with rejection: concepts and formal evaluations. In: Proceedings of KICSS 2013, Cracow, pp. 161–172 (2013)Google Scholar
  6. 6.
    Hsu, C., Lin, C.: A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)Google Scholar
  7. 7.
    Sundararajan, R., Pal, A.K.: Learning with an Embedded Reject Option. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 664–669. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marcin Luckner
    • 1
  1. 1.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarszawaPoland

Personalised recommendations