Skip to main content

Analysis of Neural Circuit for Visual Attention Using Lognormally Distributed Input

  • Conference paper
  • 3541 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8681)

Abstract

Visual attention has recently been reported to modulate neural activity of narrow spiking and broad spiking neurons in V4, with increased firing rate and less inter-trial variations. We simulated these physiological phenomena using a neural network model based on spontaneous activity, assuming that the visual attention modulation could be achieved by a change in variance of input firing rate distributed with a lognormal distribution. Consistent with the physiological studies, an increase in firing rate and a decrease in inter-trial variance was simultaneously obtained in the simulation by increasing variance of input firing rate distribution. These results indicate that visual attention forms strong sparse and weak dense input or a ‘winner-take-all’ state, to improve the signal-to-noise ratio of the target information.

Keywords

  • Visual Attention
  • Neural Network Model
  • Spontaneous Activity
  • Lognormal Distribution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-11179-7_59
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-11179-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R.: Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology 77(1), 24–42 (1997)

    Google Scholar 

  2. Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention. Science 291(5508), 1560–1563 (2001)

    CrossRef  Google Scholar 

  3. Weerd, P.D., Peralta, M.R., Desimone, R., Ungerleider, L.G.: Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nature Neuroscience 3(4), 409 (2000)

    CrossRef  Google Scholar 

  4. Reynolds, J.H., Heeger, D.J.: The normalization model of attention. Neuron 61(2), 168–185 (2009)

    CrossRef  Google Scholar 

  5. Mitchell, J.F., Sundberg, K.A., Reynolds, J.H.: Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55(1), 131–141 (2007)

    CrossRef  Google Scholar 

  6. Churchland, M.M., Yu, B.M., Cunningham, J.P., Sugrue, L.P., Cohen, M.R., Corrado, G.S., Newsome, W.T., Clark, A.M., Hosseini, P., Scott, B.B., Bradley, D.C., Smith, M.A., Kohn, A., Movshon, J.A., Armstrong, K.M., Moore, T., Chang, S.W., Snyder, L.H., Lisberger, S.G., Priebe, N.J., Finn, I.M., Ferster, D., Ryu, S.I., Santhanam, G., Sahani, M., Shenoy, K.V.: Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience 13(3), 369–378 (2010)

    CrossRef  Google Scholar 

  7. Tolhurst, D.J., Movshon, J.A., Dean, F.: The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research 23(8), 775–785 (1982)

    CrossRef  Google Scholar 

  8. McAdams, C.J., Maunsell, J.H.: Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23(4), 765–773 (1999)

    CrossRef  Google Scholar 

  9. Brumberg, J.C., Nowak, L.G., McCormick, D.A.: Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 20(13), 4829–4843 (2000)

    Google Scholar 

  10. Nowak, L.G., Azouz, R., Sanchez-Vives, M.V., Gray, C.M., McCormick, D.A.: Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. Journal of Neurophysiology 89(3), 1541–1566 (2003)

    CrossRef  Google Scholar 

  11. Vigneswaran, G., Kraskov, A., Lemon, R.N.: Large identified pyramidal cells in macaque motor and premotor cortex exhibit “thin spikes”: implications for cell type classification. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 31(40), 14235–14242 (2011)

    CrossRef  Google Scholar 

  12. Teramae, J., Tsubo, Y., Fukai, T.: Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links. Scientific Reports 2, 485 (2012)

    CrossRef  Google Scholar 

  13. Berkes, P., Orbn, G., Lengyel, M., Fiser, J.: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331(1), 83–87 (2011)

    Google Scholar 

  14. Hromádka, T., DeWeese, M., Zador, A.: Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biology 6(1), e16 (2008)

    Google Scholar 

  15. Koulakov, A.A., Hromádka, T., Zador, A.M.: Correlated connectivity and the distribution of firing rates in the neocortex. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29(12), 3685–3694 (2009)

    CrossRef  Google Scholar 

  16. Mitchell, J.F., Sundberg, K.A., Reynolds, J.H.: Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63(6), 879–888 (2009)

    CrossRef  Google Scholar 

  17. Cohen, M.R., Maunsell, J.H.R.: Attention improves performance primarily by reducing interneuronal correlations. Nature Neuroscience 12(12), 1594–1600 (2009)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nagano, Y., Watanabe, N., Aoyama, A. (2014). Analysis of Neural Circuit for Visual Attention Using Lognormally Distributed Input. In: , et al. Artificial Neural Networks and Machine Learning – ICANN 2014. ICANN 2014. Lecture Notes in Computer Science, vol 8681. Springer, Cham. https://doi.org/10.1007/978-3-319-11179-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11179-7_59

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11178-0

  • Online ISBN: 978-3-319-11179-7

  • eBook Packages: Computer ScienceComputer Science (R0)