Analysis of Neural Circuit for Visual Attention Using Lognormally Distributed Input
- 3k Downloads
Abstract
Visual attention has recently been reported to modulate neural activity of narrow spiking and broad spiking neurons in V4, with increased firing rate and less inter-trial variations. We simulated these physiological phenomena using a neural network model based on spontaneous activity, assuming that the visual attention modulation could be achieved by a change in variance of input firing rate distributed with a lognormal distribution. Consistent with the physiological studies, an increase in firing rate and a decrease in inter-trial variance was simultaneously obtained in the simulation by increasing variance of input firing rate distribution. These results indicate that visual attention forms strong sparse and weak dense input or a ‘winner-take-all’ state, to improve the signal-to-noise ratio of the target information.
Keywords
Visual Attention Neural Network Model Spontaneous Activity Lognormal DistributionPreview
Unable to display preview. Download preview PDF.
References
- 1.Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R.: Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology 77(1), 24–42 (1997)Google Scholar
- 2.Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention. Science 291(5508), 1560–1563 (2001)CrossRefGoogle Scholar
- 3.Weerd, P.D., Peralta, M.R., Desimone, R., Ungerleider, L.G.: Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nature Neuroscience 3(4), 409 (2000)CrossRefGoogle Scholar
- 4.Reynolds, J.H., Heeger, D.J.: The normalization model of attention. Neuron 61(2), 168–185 (2009)CrossRefGoogle Scholar
- 5.Mitchell, J.F., Sundberg, K.A., Reynolds, J.H.: Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55(1), 131–141 (2007)CrossRefGoogle Scholar
- 6.Churchland, M.M., Yu, B.M., Cunningham, J.P., Sugrue, L.P., Cohen, M.R., Corrado, G.S., Newsome, W.T., Clark, A.M., Hosseini, P., Scott, B.B., Bradley, D.C., Smith, M.A., Kohn, A., Movshon, J.A., Armstrong, K.M., Moore, T., Chang, S.W., Snyder, L.H., Lisberger, S.G., Priebe, N.J., Finn, I.M., Ferster, D., Ryu, S.I., Santhanam, G., Sahani, M., Shenoy, K.V.: Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience 13(3), 369–378 (2010)CrossRefGoogle Scholar
- 7.Tolhurst, D.J., Movshon, J.A., Dean, F.: The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research 23(8), 775–785 (1982)CrossRefGoogle Scholar
- 8.McAdams, C.J., Maunsell, J.H.: Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23(4), 765–773 (1999)CrossRefGoogle Scholar
- 9.Brumberg, J.C., Nowak, L.G., McCormick, D.A.: Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 20(13), 4829–4843 (2000)Google Scholar
- 10.Nowak, L.G., Azouz, R., Sanchez-Vives, M.V., Gray, C.M., McCormick, D.A.: Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. Journal of Neurophysiology 89(3), 1541–1566 (2003)CrossRefGoogle Scholar
- 11.Vigneswaran, G., Kraskov, A., Lemon, R.N.: Large identified pyramidal cells in macaque motor and premotor cortex exhibit “thin spikes”: implications for cell type classification. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 31(40), 14235–14242 (2011)CrossRefGoogle Scholar
- 12.Teramae, J., Tsubo, Y., Fukai, T.: Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links. Scientific Reports 2, 485 (2012)CrossRefGoogle Scholar
- 13.Berkes, P., Orbn, G., Lengyel, M., Fiser, J.: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331(1), 83–87 (2011)Google Scholar
- 14.Hromádka, T., DeWeese, M., Zador, A.: Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biology 6(1), e16 (2008)Google Scholar
- 15.Koulakov, A.A., Hromádka, T., Zador, A.M.: Correlated connectivity and the distribution of firing rates in the neocortex. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29(12), 3685–3694 (2009)CrossRefGoogle Scholar
- 16.Mitchell, J.F., Sundberg, K.A., Reynolds, J.H.: Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63(6), 879–888 (2009)CrossRefGoogle Scholar
- 17.Cohen, M.R., Maunsell, J.H.R.: Attention improves performance primarily by reducing interneuronal correlations. Nature Neuroscience 12(12), 1594–1600 (2009)CrossRefGoogle Scholar