Mix-Matrix Transformation Method for Max-Сut Problem

  • Iakov Karandashev
  • Boris Kryzhanovsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8681)


One usually tries to raise the efficiency of optimization techniques by changing the dynamics of local optimization. In contrast to the above approach, we propose changing the surface of the problem rather than the dynamics of local search. The Mix-Matrix algorithm proposed by the authors previously [1] realizes such transformation and can be applied directly to a max-cut problem and successfully compete with other popular algorithms in this field such as CirCut and Scatter Search.


Discrete optimization mix-matrix max-cut quadratic binary minimization combinatorial optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karandashev, I., Kryzhanovsky, B.: The Mix-Matrix Method in the Problem of Binary Quadratic Optimization. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 41–48. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Liers, F., Junger, M., Reinelt, G., Rinaldi, G.: Computing Exact Ground States of Hard Ising Spin Glass Problems by Branch-and-Cut. In: New Optimization Algorithms in Physics, pp. 47–68. Wiley (2004)Google Scholar
  3. 3.
    Goemans, M.X., Williamson, D.P.: 878-approximation Algorithms for MAXCUT and MAX2SAT. In: ACM Symposium on Theory of Computing (STOC) (1994)Google Scholar
  4. 4.
    Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and nonapproximability-towards tight results. In: Proc. of 36th IEEE Symp. on Foundations of Computer Science, pp. 422–431 (1995)Google Scholar
  5. 5.
    Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to Optimality by Intersecting Semidefinite and Polyhedral Relaxations. Math. Programming 121(2), 307 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Wiegele, A.: Nonlinear Optimization Techniques Applied to Combinatorial Optimization Problems. Dissertation, i-x, pp. 1-131 (October 2006)Google Scholar
  7. 7.
    Hopfield, J.J.: Neural Networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA 79, 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biological Cybernetics 52, 141–152 (1985)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Fu, Y., Anderson, P.W.: Application of statistical mechanics to NP-complete problems in combinatorial optimization. Journal of Physics A 19, 1605–1620 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Poggio, T., Girosi, F.: Regularization algorithms for learning that are equivalent to multilayer networks. Science 247, 978–982 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Mulder, S., Wunsch II, D.: A Million City Traveling Salesman Problem Solution by Divide and Conquer Clustering and Adaptive Resonance Neural Networks. Neural Networks 16(5-6), 827–832 (2003)CrossRefGoogle Scholar
  12. 12.
    Wu, F., Tam, P.K.S.: A neural network methodology of quadratic optimization. International Journal of Neural Systems 9(2), 87–93 (1999)CrossRefGoogle Scholar
  13. 13.
    Pinkas, G., Dechter, R.: Improving Connectionist Energy Minimization. Journal of Artificial Intelligence Research 3(195), 23–48 (1995)Google Scholar
  14. 14.
    Kryzhanovsky, B.V., Magomedov, B.M., Mikaelyan, A.L.: A Relation Between the Depth of a Local Minimum and the Probability of Its Detection in the Generalized Hopfield Model. Doklady Mathematics 72(3), 986–990 (2005)Google Scholar
  15. 15.
    Kryzhanovsky, B.V., Magomedov, B.M.: Application of domain neural network to optimization tasks. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 397–403. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Hartmann, A.K., Rieger, H. (eds.): New Optimization Algorithms in Physics. Wiley-VCH, Berlin (2004)zbMATHGoogle Scholar
  17. 17.
    Duch, W., Korczak, J.: Optimization and global minimization methods suitable for neural networks. KMK UMK Technical Report 1/99; Neural Computing Surveys (1998),
  18. 18.
    Hartmann, A., Rieger, H.: Optimization Algorithms in Physics. Wiley-VCH, Berlin (2001)CrossRefGoogle Scholar
  19. 19.
    Litinskii, L.B.: Eigenvalue problem approach to discrete minimization. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 405–410. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Smith, K.A.: Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research. INFORMS Journal on Computing 11(1), 15–34 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Joya, G., Atencia, M., Sandoval, F.: Hopfield Neural Networks for Optimization: Study of the Different Dynamics. Neurocomputing 43(1-4), 219–237 (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    Litinskii, L.B., Magomedov, B.M.: Global Minimization of a Quadratic Functional: Neural Networks Approach. Pattern Recognition and Image Analysis 15(1), 80–82 (2005)Google Scholar
  23. 23.
    Boettecher, S.: Extremal Optimization for Sherrington-Kirkpatrick Spin Glasses. Eur. Phys. Journal B. 46, 501 (2005)CrossRefGoogle Scholar
  24. 24.
    Kryzhanovsky, B.V., Magomedov, B.M., Fonarev, A.B.: On the Probability of Finding Local Minima in Optimization Problems. In: Proc. of Int. Joint Conf. on Neural Networks IJCNN 2006, pp. 5888–5892 (2006)Google Scholar
  25. 25.
    Kryzhanovsky, B.V., Kryzhanovsky, V.M.: The shape of a local minimum and the probability of its detection in random search. In: Filipe, J., Ferrier, J.-L., Andrade-Cetto, J. (eds.) Informatics in Control, Automation and Robotics. LNEE, vol. 24, pp. 51–61. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Houdayer, J., Martin, O.C.: Hierarchical approach for computing spin glass ground states. Phys. Rev. E 64, 56704 (2001)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Marti, R., Duarte, A., Laguna, M.: Advanced Scatter Search for the Max-Cut Problem. INFORMS Journal on Computing 01(21), 26–38 (2009)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Burer, S., Monteiro, R.D.C., Zhang, Y.: Rank-Two Relaxation Heuristics for Max-Cut and Other Binary Quadratic Programs. SIAM Journal on Optimization 12, 503–521 (2000)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuristics for the max-cut problem. Optim. Methods Software 7, 1033–1058 (2002)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Krishnan, K., Mitchell, J.E.: A Semidefinite Programming Based Polyhedral Cut and Price Approach for the Maxcut Problem. Comput. Optim. Appl. 33(1), 51–71 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Iakov Karandashev
    • 1
  • Boris Kryzhanovsky
    • 1
  1. 1.Scientific Research Institute for System Analysis of Russian Academy of SciencesMoscowRussia

Personalised recommendations