Contribution to Study Performance of the Induction Motor by Sliding Mode Control and Field Oriented Control

Part of the Studies in Computational Intelligence book series (SCI, volume 576)


The induction motor squirrel cage that is deemed by its strength, high torque mass, robustness, and its relatively low cost ... etc., meanwhile, it benefited from the support of industry since its invention (invention by Tesla the late nineteenth century). Unfortunately, these advantages are accompanied by a high complexity of the physical interactions between the stator and the rotor. Therefore, dynamic control requires complex control algorithms in contrast to its structural simplicity. In recent decades, many techniques of control of the induction machine, such as technical oriented control or Field Oriented control, have emerged and are currently used to enjoy the benefits of the asynchronous machine for applications where variable speed is essential. The high operating control of the induction machine began with the invention of the oriented vector control in the late 60s flux. Before that time control of the induction machine was limited to scalar commands. This operating control does not provide a decoupling between the flux and torque. To illustrate this, the torque of a cage induction motor has to be increased by increasing the slip, the flux is affected by a decrease; therefore the torque control is dependent of the stream, for this the inherent coupling between these two variables makes conventional techniques less efficient. To solve these problems this paper seeks to analyze dynamical performances and sensitivity to induction motor parameter changes, two techniques are applied Sliding Mode Control and Field Oriented Control. For this, this design on the basis of some simulations results is illustrated with different functions in order to illustrate its efficiency and make comparison between the two techniques; Numerical simulations are presented to validate the proposed methods. The objective of this paper is to guarantee the desired performance of the induction motor, robust to the parameters variations, disturbances, and reach the speed of rotation at the speed desired in a minimum response time.


Induction Motor (IM) Sliding Mode Control (SMC) Nonlinear sliding surface Indirect Field Oriented Control (IFOC). 

Supplementary material


  1. Araujo, R.E., Freitas, D.: Non-linear control of an induction motor: sliding mode theory leads to robust and simple solution. Int. J. Adapt. Control Signal Process. 14(2), 331–353 (2000). ISSN: 0890–6327CrossRefGoogle Scholar
  2. Aurora, C., Ferrara, A.: A sliding mode observer for sensorless induction motor speed regulation. Int. J. Syst. Sci. 38(11), 913–929 (2007). doi: 10.1080/00207720701620043 CrossRefMathSciNetMATHGoogle Scholar
  3. Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, New York (1995)Google Scholar
  4. Attaianese, C.,Timasso, G. (2001) Control of induction motor. In: Proceedings - Electric Power Applications, vol. 148 (3), pp. 272–278, May 2001Google Scholar
  5. Blaschke, F.: The principle of field orientation control as applied to the new transvector closed loop control system for rotating machines. Siemens Rev. 39(5), 217–220 (1977)Google Scholar
  6. Bottura, C.P., Neto, M.F.S., Filho, S.A.A.: Robust speed control of an induction motor: An control theory approach with field orientation and -analysis. IEEE Trans. Power Elect. 15(5), 908–9152 (2000)CrossRefGoogle Scholar
  7. Boucheta, A., Bousserhane, I.K., Hazzab, A., Sicard, P., Fellah, M.K.: Speed control of linear induction motor using sliding modecontroller considering the end effects. J. Electr. Eng. Technol. 7(1), 34–45 (2012)CrossRefGoogle Scholar
  8. Bouchhida, O., Boucherit, M.S., & Cherifi, A. (2012). Minimizing Torque-Ripple in Inverter-Fed Induction Motor Using Harmonic Elimination PWM Technique. First published Induction Motors - Modeling and Control, Edited by Rui Esteves Araújo, Croatia, pp. 465–486,doi: 10.5772/37883.
  9. Boukettaya, G., Andoulsi, R., Ouali, V. (2008) Commande vectorielle avec observateur de vitesse d’une pompe asynchrone couplée à un générateur photovoltaïque. In: Revue des Energies Renouvelables CICME’08 Sousse, pp. 75–85Google Scholar
  10. Bounar, N., Boulkroune, A., Boudjema, F., (2012) Fuzzy slinding mode control of double-fed induction machine. In: International conference on Information Processing and Electrical Engineering, ICIPEE’12, pp. 31–36, ISBN : 978-9931-9068-0-9Google Scholar
  11. Caruana, C., Asher, G.M., Sumner, M.: Performance of high frequency signal injection techniques for zero-low-frequency vector control induction machines under sensorless conditions. IEEE Trans. Ind. Electr. 53, 225–238 (2006)CrossRefGoogle Scholar
  12. Castillo-Toledo, B., Di Gennaro, S., Loukianov, A.G., Rivera, J.: Hybrid control of induction motors via sampled closed representations. IEEE Trans. Ind. Electr. 55(10), 3756–3771 (2008)CrossRefGoogle Scholar
  13. Chaigne, C., Etien, E., Cauët, S., Rambaul, L.: Commande Vectorielle Sans Capteur des Machines. Asynchrones edition. Hermes Science Publisching, London (2005)Google Scholar
  14. Comanescu, M., Xu, L., Batzel, T.D.: Decoupled current control of sensorless induction-motor drives by integral sliding mode. IEEE Trans. Ind. Electr. 55(11), 3836–3845 (2008)CrossRefGoogle Scholar
  15. Corradini, M. L., Ippoliti, G., Longhi, S., & Orlando, G. (2012). A quasisliding mode approach for robust control and speed estimation of PM synchronous motors. Feb. 2012, IEEE Trans. Ind. Electron., 59 (2), pp. 1096–1104.Google Scholar
  16. Duarte-Mermoud, M. A., Travieso-Torres, J. C. (2012) Advanced Control Techniques for Induction Motors. First published Induction Motors - Modeling and Control, Edited by Rui Esteves Araújo, Croatia, pp. 295–325. ISBN: 978-953-51-0843-6Google Scholar
  17. Dwards, C.E., Spurgeon, S.K.: Sliding Mode Control: Theory and Application. Taylor & Francis, London (1998)Google Scholar
  18. El-Sousy, F.F.M.: Adaptive Dynamic Sliding-Mode Control System Using Recurrent RBFN for High-Performance Induction Motor Servo Drive. November 2013. IEEE Transactions on Industrial Informatics 9(4), (2013). 1551-3203Google Scholar
  19. El-Sousy, F.F.M., Salem, M.M.: Simple neuro-controllers for field oriented induction motor servo drive system. J. Power Electr. 4(1), 28–38 (2004)Google Scholar
  20. Ghanes, M., Zheng, G.: On sensorless induction motor drives: Sliding-mode observer and output feedback controller, industrial electronics. IEEE Trans. Ind. Electron 56(9), 3404–3413 (2009)CrossRefGoogle Scholar
  21. Hautier, J. P., Caron, J. P. (1995). Modélisation et commande de la machine asynchrone. Editions Technip.Google Scholar
  22. Holmes, D. G., McGrath, B. P., & Parker, S. G. (2012). Current regulation strategies for vector-controlled induction motor drives. Oct. 2012, IEEE Trans. Ind. Electron, 59 (10), pp. 3680–3689.Google Scholar
  23. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, New York (1995). ISBN-10: 3540199160, ISBN-13: 978–3540199168CrossRefMATHGoogle Scholar
  24. Jimoh, Adisa A., Pierre-Jac Venter, P.J., and Edward K. Appiah. (2012) Modelling and Analysis of Squirrel Cage Induction Motor with Leading Reactive Power Injection. First published Induction Motors - Modelling and Control, Edited by Rui Esteves Araújo, Printed in Croatia, pp. 99–126. ISBN: 978-953-51-0843-6Google Scholar
  25. Kojabadi, H.M.: Simulation and experimental studies of model reference adaptive system for sensorless induction motor drive. Simulat. Model. Practice Theory 13, 451–464 (2005)CrossRefGoogle Scholar
  26. Leonhard, W.: Control of machines with the help of microelectronics. In: Third IFAC Symposium on Control in Power Electronics and Electrical Drives, Lausanne, pp. 35–58 (1994)Google Scholar
  27. Li, J., Xu, L., Zhang, Z.: An adaptive sliding-mode observer for induction motor sensorless speed control. IEEE Trans. Ind. Appl. 41(4), 1039–1046 (2005)CrossRefMathSciNetGoogle Scholar
  28. Liaw, C.M., Lin, Y.M., Chao, K.H.: A VSS speed controller with model reference response for induction motor drive. IEEE Trans. Ind. Electr. 48(6), 1136–1147 (2001)CrossRefGoogle Scholar
  29. Lin, C.M., Hsu, C.F.: Neural-network-based adaptive control for induction servomotor drive system. IEEE Trans. Ind. Electr. 4(91), 115–123 (2002)CrossRefGoogle Scholar
  30. Maher, R., Emar, A., Awad, M.: Indirect Field Oriented Control of an Induction Motor Sensing DC-link Current with PI Controller. Int. J. Control Sci. Eng. 2(3), 19–25 (2012). doi: 10.5923/j.control.20120203.01 CrossRefGoogle Scholar
  31. Meziane, S., Toufouti, R., Benalla, H.: Generalized nonlinear predictive control of induction motor. Int. Rev. Autom. Control 1(2), 65–71 (2008)Google Scholar
  32. Mira, F.J., Duarte-Mermoud, M.A. (2009) Speed control of an asynchronous motor using a field oriented control scheme together with a fractional order PI controller. Ann. Chilean Inst. Eng. Spania. 121(1), pp. 1–13, ISSN: 0716–3290Google Scholar
  33. Ouhrouche, M. A., Volat, C., (2000). Simulation of a direct field-oriented controller for an induction motor using matlab/simulink software package. In: Proceeding of the IASTED International Conference Modelling and Simulation, Pennsylvania, USA (May 15–17, 2000)Google Scholar
  34. Park, R.H.: Two-reaction theory of synchronous machines generalized method of analysis-part I. IEEE Trans. Ind. Electr. 48(6), 716–727 (1929)Google Scholar
  35. Pietrzak-David, M., De Fornel, B., Purwoadi, M.A., (2000). Nonlinear control for sensorless induction motor drives. In: 9th International Conference on Power Electronic and Motion- EPE PEMC, KosicGoogle Scholar
  36. Ramesh, T., Panda, A.K., Kumar, S.S. (2013) Sliding-mode and fuzzy logic control based MRAS speed estimators for sensorless direct torque and flux control of an induction motor drive. In: 2013 Annual IEEE India Conference (INDICON). 978.1-4799-2275-8/13/31.00Google Scholar
  37. Rao, S., Buss, M., Utkin, V.: Simultaneous state and parameter estimation in induction motors using first- and second-order sliding modes. IEEE Trans. Ind. Electron. 56(9), 3369–3376 (2009)CrossRefGoogle Scholar
  38. Rashed, M., Goh, K. B., Dunnigan, M. W., Mac Connell, P. F. A., Stronach, A. F. & Williams, B.W. (2005). Sensorless second-order sliding-mode speed control of a voltage-fed induction-motor drive using nonlinear state feedback. Sep. 2005, in IEE Proc.–Electr. Power Appl., 152 (5), pp. 1127–1136.Google Scholar
  39. Ravi Teja, A.V., Chakraborty, C., Maiti, S., Hori, Y.: A new model reference adaptive controller for four quadrant vector controlled induction motor drives. IEEE Trans. Ind. Electron. 59(10), 3757–3767 (2012)CrossRefGoogle Scholar
  40. Rojas, S.I., Moreno, J., Espinosa-Perez, G.: Global observability analysis of sensorless induction motors. Automatica 40, 1079–1085 (2004)CrossRefMATHGoogle Scholar
  41. Rong-Jong, W., Jeng-Dao, L., Kuo-Min, L.: Robust decoupled control of direct field oriented induction motor drive industrial electronics. IEEE Trans. Ind. Electron. 52(3), 837–854 (2005)CrossRefGoogle Scholar
  42. Saiad, A. (2012) Sliding mode controller design of an induction motor. In: International conference on information processing and electrical engineering. ICIPEE’12, pp. 396–399. ISBN : 978-9931-9068-0-9Google Scholar
  43. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)MATHGoogle Scholar
  44. Stanley, H.C.: An Analysis of the Induction Machine. American Institute of Electrical Engineers, Transactions on Industrial Electronics 57(12), 751–757 (1938)CrossRefGoogle Scholar
  45. Su, K.-H., Kung, C.-C. (2005) Supervisory enhanced genetic algorithm controller design and its application to decoupling induction motor drive. In: Proceedings of IEE–Electrical Power Applications, vol. 152 (4), pp. 1015–1026, Jul. 2005Google Scholar
  46. Talhaoui, H., Menacer, A., Kechida, R. (2013) Rotor resistance estimation using ekf for the rotor fault diagnosis in sliding mode control induction motor. In: Proceedings of the 3rd International Conference on Systems and Control, Algiers, Algeria, October 29–31, 2013. 978-1-4799-0275-0/13/31.00Google Scholar
  47. Traoré, D., Plestan, F., Glumineau, A., de Leon, J.: Sensorless induction motor: High-order sliding-mode controller and adaptive interconnected observer. IEEE Trans. Ind. Electron. 55(11), 3818–3827 (2008)CrossRefGoogle Scholar
  48. Utkin, V.I.: Sliding mode control design principles and applications to electric drive. IEEE Trans. Ind. Electron. 40(1), 23–36 (1993)CrossRefGoogle Scholar
  49. Veselic, B., Perunicic-Drazenovic, B., Milosavljevic, C.: Improved discrete-time sliding-mode position control using Euler velocity estimation. IEEE Trans. Ind. Electron. 57(11), 3840–3847 (2010)CrossRefGoogle Scholar
  50. Wai, R.J.: Adaptive sliding-mode control for induction servomotor drives. IEEE Proc Electr. Power Appl. 147, 553–562 (2000)CrossRefGoogle Scholar
  51. Wai, R.J.: Hybrid control for speed sensorless induction motor drive. IEEE Trans. Fuzzy Syst. 9(1), 116–138 (2001)CrossRefGoogle Scholar
  52. Wai, R.J.: Supervisory genetic evolution control for indirect field-oriented induction motor drive. Proc. IEE–Electr. Power Appl. 150(2), 215–226 (2003)CrossRefGoogle Scholar
  53. Wai, R.J., Lin, C.M., Hsu, C.F.: Hybrid control for induction servomotor drive. Proc. IEE–Control Theor. Appl. 149(6), 555–562 (2002)CrossRefGoogle Scholar
  54. Wai, R.J., Duan, R.Y., Chang, H.H.: Wavelet neural network control for induction motor drive using sliding-mode design technique. IEEE Trans. Ind. Electron. 50(4), 733–748 (2003)CrossRefGoogle Scholar
  55. Xia, Y., Yu, X., Oghanna, W.: Adaptive robust fast control for induction motors. IEEE Trans. Ind. Electron. 47(4), 854–862 (2000)CrossRefGoogle Scholar
  56. Zhu, Z., Xia, Y., Fu, M.: Adaptive sliding mode control for attitude stabilization with actuator saturation. IEEE Trans. Ind. Electron. 58(10), 4898–4907 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversty Mentouri of ConstantineConstantineAlgeria
  2. 2.Department of Electrical EngineeringUniversty Mouhamed Chrif Msaadia of Souk AhrasSouk AhrasAlgeria
  3. 3.Laboratory LABGET, Department of Electrical EngineeringUniversty of TebessaTebessaAlgeria

Personalised recommendations