Foundations of Boolean Stream Runtime Verification

  • Laura Bozzelli
  • César Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8734)


Stream runtime verification (SRV), pioneered by the tool LOLA, is a declarative approach to specify synchronous monitors. In SRV, monitors are described by specifying dependencies between output streams of values and input streams of values. The declarative nature of SRV enables a separation between (1) the evaluation algorithms, and (2) the monitor storage and its individual updates. This separation allows SRV to be lifted from conventional failure monitors into richer domains to collect statistics of traces. Moreover, SRV allows to easily identify specifications that can be efficiently monitored online, and to generate efficient schedules for offline monitors.

In spite of these attractive features, many important theoretical problems about SRV are still open. In this paper, we address complexity, expressiveness, succinctness, and closure issues for the subclass of Boolean SRV (BSRV) specifications. Additionally, we show that for this subclass, offline monitoring can be performed with only two passes (one forward and one backward) over the input trace in spite of the alternation of past and future references in the BSRV specification.


Temporal Logic Regular Expression Regular Language Linear Temporal Logic Valuation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: Monitoring usage-control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 360–364. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Basin, D., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bauer, A., Goré, R., Tiu, A.: A first-order policy language for history-based transaction monitoring. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 96–111. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Transactions on Software Engineering and Methodology 20(4), 14 (2011)CrossRefGoogle Scholar
  6. 6.
    Berry, G.: The foundations of Esterel. In: Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 425–454. MIT Press (2000)Google Scholar
  7. 7.
    Caspi, P., Pouzet, M.: Synchronous Kahn Networks. In: Proc. of ICFP 1996, pp. 226–238. ACM Press (1996)Google Scholar
  8. 8.
    D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: Runtime monitoring of synchronous systems. In: Proc. of TIME 2005, pp. 166–174. IEEE CS Press (2005)Google Scholar
  9. 9.
    Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Finkbeiner, B., Sankaranarayanan, S., Sipma, H.B.: Collecting statistics over runtime executions. ENTCS 70(4), 36–54 (2002)Google Scholar
  11. 11.
    Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: A declarative language for synchronous programming of real-time systems. In: Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 257–277. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  12. 12.
    Goodloe, A.E., Pike, L.: Monitoring distributed real-time systems: A survey and future directions. Technical report, NASA Langley Research Center (2010)Google Scholar
  13. 13.
    Halbwachs, N., Caspi, P., Pilaud, D., Plaice, J.: Lustre: a declarative language for programming synchronous systems. In: Proc. of POPL 1987, pp. 178–188. ACM Press (1987)Google Scholar
  14. 14.
    Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.) Verified Software. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past. In: Proc. of LICS 2002, pp. 383–392. IEEE CS Press (2002)Google Scholar
  17. 17.
    Leucker, M., Schallhart, C.: A brief account of runtime verification. The Journal of Logic and Algebraic Programming 78(5), 293–303 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New York (1995)CrossRefGoogle Scholar
  19. 19.
    Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proc. of FOCS 1972, pp. 125–129. IEEE CS Press (1972)Google Scholar
  20. 20.
    Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: A hard real-time runtime monitor. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–359. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Autom. Softw. Eng. 12(2), 151–197 (2005)CrossRefGoogle Scholar
  23. 23.
    Sen, K., Roşu, G.: Generating optimal monitors for extended regular expressions. ENTCS 89(2), 226–245 (2003)Google Scholar
  24. 24.
    Stearns, R.E., Hunt, H.B.: On the equivalence and containment problems for unambiguous regular expressions, regular grammars and finite automata. SIAM J. Comput. 14(3), 598–611 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjrner, N.: Symbolic finite state transducers: algorithms and applications. In: Proc. of POPL 2012, pp. 137–150. ACM (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Laura Bozzelli
    • 1
  • César Sánchez
    • 2
    • 3
  1. 1.Technical University of Madrid (UPM)MadridSpain
  2. 2.IMDEA Software InstituteMadridSpain
  3. 3.Institute for Information Security, CSICSpain

Personalised recommendations